Primality testing algorithms
Séminaire Bourbaki (1980-1981)
- Volume: 23, page 243-257
- ISSN: 0303-1179
Access Full Article
topHow to cite
topLenstra, H. W., Jr.. "Primality testing algorithms." Séminaire Bourbaki 23 (1980-1981): 243-257. <http://eudml.org/doc/109976>.
@article{Lenstra1980-1981,
author = {Lenstra, H. W., Jr.},
journal = {Séminaire Bourbaki},
keywords = {probabilistic criteria; primality testing; power reciprocity; polynomial time algorithm; strong pseudoprime},
language = {eng},
pages = {243-257},
publisher = {Springer-Verlag},
title = {Primality testing algorithms},
url = {http://eudml.org/doc/109976},
volume = {23},
year = {1980-1981},
}
TY - JOUR
AU - Lenstra, H. W., Jr.
TI - Primality testing algorithms
JO - Séminaire Bourbaki
PY - 1980-1981
PB - Springer-Verlag
VL - 23
SP - 243
EP - 257
LA - eng
KW - probabilistic criteria; primality testing; power reciprocity; polynomial time algorithm; strong pseudoprime
UR - http://eudml.org/doc/109976
ER -
References
top- 1. L.M. Adleman, On distinguishing prime numbers from composite numbers (abstract), Proc. 21st Annual IEEE Symposium on Foundations of Computer Science (1980), 387-406.
- 2. L.M. Adleman, C. Pomerance, R.S. Rumely, On distinguishing prime numbers from composite numbers, preprint. Zbl0526.10004MR683806
- 3. S.U. Chase, D.K. Harrison, A. Rosenberg, Galois theory and Galois cohomology of commutative rings, Memoirs Amer. Math. Soc.52 (1965), 15-33. Zbl0143.05902MR195922
- 4. F. Demeyer, E. Ingraham, Separable algebras over commutative rings, Lecture Notes in Mathematics181, Springer, Berlin1971. Zbl0215.36602MR280479
- 5. R.K. Guy, How to factor a number, Proc. Fifth Manitoba Conf. Numer. Math., Utilitas, Winnipeg (1975), 49-89. Zbl0338.10001MR404120
- 6. D.E. Knuth, The art of computer programming, vol. 2, Seminumerical algorithms, second edition, Addison-Wesley, Reading1981. Zbl0191.18001MR633878
- 7. S. Lang, Cyclotomic fields, Springer, Berlin1978. Zbl0395.12005MR485768
- 8. H.W. Lenstra, Jr., Euclid's algorithm in cyclotomic fields, J. London Math. Soc. (2) 10 (1975), 457-465. Zbl0313.12001MR387257
- 9. J.M. Pollard, Theorems on factorization and primality testing, Proc. Cambridge Philos. Soc.76 (1974), 521-528. Zbl0294.10005MR354514
- 10. K. Prachar, Über die Anzahl der Teiler einer natürlichen Zahl, welche die Form p - 1 haben, Monatsh. Math.59 (1955), 91-97. Zbl0064.04107MR68569
- 11. C.P. Schnorr, Refined analysis and improvements on some factoring algorithms, to appear in: Automata, Languages and Programming, Eighth Colloquium, Haifa1981, Lecture Notes in Computer Science, to appear. Zbl0469.68043MR635126
- 12. R. Solovay, V. Strassen, A fast Monte-Carlo test for primality, SIAM J. Comput.6 (1977), 84-85; erratum, 7 (1978), 118. Zbl0373.10002MR429721
- 13. H.C. Williams, Primality testing on a computer, Ars Combin.5 (1978), 127-185. Zbl0406.10008MR504864
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.