Optique non linéaire et ondes sur critiques

Gilles Lebeau[1]

  • [1] Centre de Mathématiques, École Polytechnique, U.M.R. 7640 du C.N.R.S., F - 91128 Palaiseau cedex

Séminaire Équations aux dérivées partielles (1999-2000)

  • Volume: 1999-2000, page 1-11

How to cite

top

Lebeau, Gilles. "Optique non linéaire et ondes sur critiques." Séminaire Équations aux dérivées partielles 1999-2000 (1999-2000): 1-11. <http://eudml.org/doc/11001>.

@article{Lebeau1999-2000,
affiliation = {Centre de Mathématiques, École Polytechnique, U.M.R. 7640 du C.N.R.S., F - 91128 Palaiseau cedex},
author = {Lebeau, Gilles},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {instability; radially symmetric solutions; supercritical semilinear wave equations; three space variables},
language = {fre},
pages = {1-11},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Optique non linéaire et ondes sur critiques},
url = {http://eudml.org/doc/11001},
volume = {1999-2000},
year = {1999-2000},
}

TY - JOUR
AU - Lebeau, Gilles
TI - Optique non linéaire et ondes sur critiques
JO - Séminaire Équations aux dérivées partielles
PY - 1999-2000
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1999-2000
SP - 1
EP - 11
LA - fre
KW - instability; radially symmetric solutions; supercritical semilinear wave equations; three space variables
UR - http://eudml.org/doc/11001
ER -

References

top
  1. H. Bahouri, P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations AJM, vol. 121 (1999), p.131-175. Zbl0919.35089MR1705001
  2. H. Bahouri, J. Shatah, Decay estimate for the critical semi-linear wave equation Annales IHP, Analyse non linéaire, vol. 15 (1998) p.783-789. Zbl0924.35084MR1650958
  3. P. Brenner, P. Kumlin, On wave equations with supercritical non linearities Arch. Math., vol. 74 (2000) p.129-146. Zbl0971.35051MR1735230
  4. I.Gallagher, Profil decomposition for solutions of the Navier-Stokes equations preprint Université Paris-Sud 2000-48 p1,30. 
  5. M. Grillakis, Regularity for the wave equation with a critical non linearity CPAM 45 (1992) p.749-774. Zbl0785.35065MR1162370
  6. H.P. Mac-Kean, P. van Moerbeke, The spectrum of Hill’s equation Inventiones math, vol.30 (1975) p.217-274. 
  7. J.C. Luke A perturbation method for non linear dispersive wave problems Proc. Roy. Soc. A, vol. 292 (1966) p.403-412. Zbl0143.13603MR195289
  8. J. Shatah, M. Struwe, Well posedness in the energy space for semilinear wave equations with critical growth IMRN, 1994 n 7, p.303-309. Zbl0830.35086MR1283026
  9. G.B. Whitham, Linear and nonlinear waves Wiley-Intersciences series of texts, monographs and tracts John-Wiley and sons, 1993. Zbl0373.76001MR1699025

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.