Les travaux de A. Fröhlich, Ph. Cassou-Noguès et M. J. Taylor sur les bases normales

Jean Cougnard

Séminaire Bourbaki (1982-1983)

  • Volume: 25, page 25-38
  • ISSN: 0303-1179

How to cite

top

Cougnard, Jean. "Les travaux de A. Fröhlich, Ph. Cassou-Noguès et M. J. Taylor sur les bases normales." Séminaire Bourbaki 25 (1982-1983): 25-38. <http://eudml.org/doc/110012>.

@article{Cougnard1982-1983,
author = {Cougnard, Jean},
journal = {Séminaire Bourbaki},
keywords = {normal bases; Artin L-functions; root numbers; Galois Gauss sums},
language = {fre},
pages = {25-38},
publisher = {Société Mathématique de France},
title = {Les travaux de A. Fröhlich, Ph. Cassou-Noguès et M. J. Taylor sur les bases normales},
url = {http://eudml.org/doc/110012},
volume = {25},
year = {1982-1983},
}

TY - JOUR
AU - Cougnard, Jean
TI - Les travaux de A. Fröhlich, Ph. Cassou-Noguès et M. J. Taylor sur les bases normales
JO - Séminaire Bourbaki
PY - 1982-1983
PB - Société Mathématique de France
VL - 25
SP - 25
EP - 38
LA - fre
KW - normal bases; Artin L-functions; root numbers; Galois Gauss sums
UR - http://eudml.org/doc/110012
ER -

References

top
  1. [1] J.V. Armitage, Zeta functions with a zero at s = 1/2. Invent. Math.15, (1972), 199-207. Zbl0233.12006MR291122
  2. [2] Ph. Cassou-Noguès, Quelques théorèmes de base normale. Astérisque41-42, (1977), 183-189. Zbl0356.12011MR450234
  3. [3] Ph. Cassou-Noguès, Modules de Frobenius et structure galoisienne des anneaux d'entiers. J. of Algebra71, (1981), 268-289. Zbl0468.12003MR627440
  4. [4] Ph. Cassou-Noguès, Sur une conjecture de Fröhlich pour les extensions quaternioniennes de corps de nombres. Séminaire BordeauxI, 1981-1982. 
  5. [5] J. Brinkhuis, Embedding problems and Galois modules. Thèse, Université de Leyde, (1981). Zbl0609.12008
  6. [6] Ph. Cassou-Noguès, M.J. Taylor, Local root numbers of hermition galois module structure of rings of integers. A paraitre dans Math. Annal. Zbl0494.12010
  7. [7] Ph. Cassou-Noguès, M.J. Taylor, Constante de l'équation fonctionnelle de la fonction L d'Artin d'une représentation symplectique modérée. A paraitre dans Ann. Inst. Fourier. Zbl0558.12003
  8. [8] A. Fröhlich, Artin root numbers and normal integral bases for quaternion fields. Invent. Math.17, (1972), 143-166. Zbl0261.12008MR323759
  9. [9] A. Fröhlich, Artin root numbers, conductors and representations for generalized quaternion groups. Proc. London Math. Soc. (3), 28, (1974), 402-438. Zbl0321.12018MR364188
  10. [10] A. Fröhlich, Module invariants and root numbers for quaternion fields of degree 4pr. Proc. Camb. Phil. Soc.76, (1974), 393-399. Zbl0304.12008MR371860
  11. [11] A. Fröhlich, Galois module structure and Artin L functions. Proc. Int. Cong. Math. Vancouvert, (1974), 351-356. Zbl0346.12006MR432594
  12. [12] A. Fröhlich, A normal integral basis theorem. J. of Algebra39, (1976), 131-137. Zbl0345.12001MR401709
  13. [13] A. Fröhlich, Arithmetic and Galois module structure for tame extensions. J. reine angew. Math.286/287, (1976), 380-440. Zbl0385.12004MR432595
  14. [14] A. Fröhlich, Symplectic local constants and hermitian Galois module structure. Internat. Symp. Kyoto (ed. S. Iyanaga) Japan Soc. for the promotion of Science Tokyo, (1977), 25-42. Zbl0424.12006MR447180
  15. [15] A. Fröhlich, Local hermitian group modules, quadratic form conference. Queen's papers on pure and app. Math., 46, Kingston Ontario, (1977). Zbl0384.12009MR485789
  16. [16] A. Fröhlich, Galois structure and root numbers for quaternion extensions of degree 2n. J. of number theory12, (1980), 499-518. Zbl0469.12002MR599820
  17. [17] A. Fröhlich, The hermitian class group. Integral representations and applications. Lecture Notes in Math.882, 191-206, Springer Verlag1981. Zbl0519.12006MR646099
  18. [18] A. Fröhlich, Value distributions of symplectic root numbers. A paraitre. Zbl0519.12007
  19. [19] A. Fröhlich, Class groups, in particular hermitian class groups. A paraitre. 
  20. [20] A. Fröhlich, Locally free modules over arithmetic orders. J. reine angew. Math.274/275, (1975), 112-138. Zbl0316.12013MR376619
  21. [21] A. Fröhlich, J. Queyrut, On the functional equation of the Artin L - function for characters of real representations. Invent. Math.20, (1973), 125-138. Zbl0256.12010MR321888
  22. [22] J. Martinet, Modules sur l'algèbre du groupe quaternionien. Ann. Sc. de l'E.N.S.4ème série, 4, (1971), 299-308. Zbl0219.12012MR291208
  23. [23] J. Martinet, Bases normales et constante de l'équation fonctionnelle des fonctions L d'Artin. Séminaire Bourbaki exp. 450, (1974). Zbl0331.12006
  24. [24] J. Martinet, Character theory and Artin L functions. Algebraic Number fields, 1-87, édité par A. Fröhlich, Academic Press, (1977). Zbl0359.12015MR447187
  25. [25] J. Queyrut, S-groupe des classes d'un ordre arithmétique. J. of Algebra, 76, (1982), 234-260. Zbl0482.16020MR659222
  26. [26] J.-P. Serre, Représentations linéaires des groupes finis. 2ème édition, Hermann, Paris, (1977). Zbl0407.20003
  27. [27] J.-T. Tate, Local constants. Algebraic Number fields, 89-131, édité par A. Fröhlich, Academic Press, (1977). Zbl0425.12019MR457408
  28. [28] M.-J. Taylor, Locally free classgroups of prime power order. J. of Algebra, 50, (1978), 463-487. Zbl0377.20006MR463240
  29. [29] M.-J. Taylor, Galois module structure of integers of relative abelian extensions. J. reine angew. Math.303/304, (1978), 97-101. Zbl0384.12007MR514674
  30. [30] M.-J. Taylor, Galois module structure of rings of integers. Ann. Inst. Fourier Grenoble 30-3, (1980), 11-48. Zbl0416.12004MR597016
  31. [31] M.-J. Taylor, A logarithmic approach to classgroups of integral group-rings. J. of Algebra, 66, (1980), 321-353. Zbl0491.12007MR593599
  32. [32] M.-J. Taylor, On Fröhlich's conjecture for rings of integers of tame extensions. Invent. Math.63, (1981), 41-79. Zbl0469.12003MR608528

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.