Galois module structure of rings of integers
Annales de l'institut Fourier (1980)
- Volume: 30, Issue: 3, page 11-48
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topTaylor, Martin J.. "Galois module structure of rings of integers." Annales de l'institut Fourier 30.3 (1980): 11-48. <http://eudml.org/doc/74455>.
@article{Taylor1980,
abstract = {Let $E/F$ be a Galois extension of number fields with $\Gamma =$ Gal$(E/F)$ and with property that the divisors of $(E:F)$ are non-ramified in $E/\{\bf Q\}$. We denote the ring of integers of $E$ by $\{\cal O\}_E$ and we study $\{\cal O\}_E$ as a $\{\bf Z\}\Gamma $-module. In particular we show that the fourth power of the (locally free) class of $\{\cal O\}_E$ is the trivial class. To obtain this result we use Fröhlich’s description of class groups of modules and his representative for the class of $\{\cal E\}_E$, together with new determinantal congruences for cyclic group rings and corresponding congruences for Gauss sums.},
author = {Taylor, Martin J.},
journal = {Annales de l'institut Fourier},
keywords = {Gauß sums; Galois extension; ring of integers; class groups of modules},
language = {eng},
number = {3},
pages = {11-48},
publisher = {Association des Annales de l'Institut Fourier},
title = {Galois module structure of rings of integers},
url = {http://eudml.org/doc/74455},
volume = {30},
year = {1980},
}
TY - JOUR
AU - Taylor, Martin J.
TI - Galois module structure of rings of integers
JO - Annales de l'institut Fourier
PY - 1980
PB - Association des Annales de l'Institut Fourier
VL - 30
IS - 3
SP - 11
EP - 48
AB - Let $E/F$ be a Galois extension of number fields with $\Gamma =$ Gal$(E/F)$ and with property that the divisors of $(E:F)$ are non-ramified in $E/{\bf Q}$. We denote the ring of integers of $E$ by ${\cal O}_E$ and we study ${\cal O}_E$ as a ${\bf Z}\Gamma $-module. In particular we show that the fourth power of the (locally free) class of ${\cal O}_E$ is the trivial class. To obtain this result we use Fröhlich’s description of class groups of modules and his representative for the class of ${\cal E}_E$, together with new determinantal congruences for cyclic group rings and corresponding congruences for Gauss sums.
LA - eng
KW - Gauß sums; Galois extension; ring of integers; class groups of modules
UR - http://eudml.org/doc/74455
ER -
References
top- [1] Ph. CASSOU-NOGUES, Quelques théorèmes de base normale d'entiers, Ann. Inst. Fourier, 28, 3 (1978), 1-33. Zbl0368.12004
- [2] P. DELIGNE, Les constantes des équations fonctionnelles des fonctions L, Modular forms in one variable III, Lecture Notes in Mathematics, 349 (1973), 501-597. Zbl0271.14011MR50 #2128
- [3] A. FRÖHLICH, Arithmetic and Galois module structure for tame extensions, J. reine und angew. Math., 286/287 (1976), 380-440. Zbl0385.12004MR55 #5582
- [4] A. FRÖHLICH, To appear in the Springer Ergebnisse series.
- [5] A. FRÖHLICH, Galois module structure, Algebraic Number Fields, (Proc. Durham Symposium), Academic Press, 1977, London. Zbl0375.12010
- [6] A. FRÖHLICH, Locally free modules over arithmetic orders, J. reine angew. Math., 274/5 (1975), 112-124. Zbl0316.12013MR51 #12794
- [7] A. FRÖHLICH and M.J. TAYLOR, The arithmetic theory of local Galois Gauss sums for tame characters, to appear in the Philosophical Transactions of the Royal Society. Zbl0436.12014
- [8] T.Y. LAM, Artin exponents of finite groups, J. Algebra, 9 (1968), 94-119. Zbl0277.20006MR37 #304
- [9] S. LANG, Algebraic number theory, Addison-Wesley (1970). Zbl0211.38404MR44 #181
- [10] J. MARTINET, Character theory and Artin L-functions, Algebraic Number fields, (Proc. Durham Symposium), Academic Press, (1977), London. Zbl0359.12015MR56 #5502
- [11] E. NOETHER, Normalbasis bei Körpern ohne höhere Verzweigung, J. reine angew. Math., 167 (1932), 147-152. Zbl0003.14601JFM58.0172.02
- [12] J.P. SERRE, Corps locaux, Hermann, Paris, 1968.
- [13] J.P. SERRE, Représentations linéaires des groupes finis, 2nd ed., Hermann, Paris, 1971. Zbl0223.20003MR50 #4718
- [14] J. TATE, Local constants, Algebraic Number Fields, (Proc. Durham Symposium), Academic Press, London, 1977.
- [15] M.J. TAYLOR, Galois module structure of relative abelian extensions, J. reine angew. Math., 303/4 (1978), 97-101. Zbl0384.12007MR80e:12006
- [16] M.J. TAYLOR, On the self-duality of a ring of integers as a Galois module, Inventiones Mathematicae, 46 (1978), 173-177. Zbl0381.12007MR57 #12460
- [17] M.J. TAYLOR, A logarithmic description of locally free classgroups of finite groups, to appear in the Journal of Algebra.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.