Galois module structure of rings of integers

Martin J. Taylor

Annales de l'institut Fourier (1980)

  • Volume: 30, Issue: 3, page 11-48
  • ISSN: 0373-0956

Abstract

top
Let E / F be a Galois extension of number fields with Γ = Gal ( E / F ) and with property that the divisors of ( E : F ) are non-ramified in E / Q . We denote the ring of integers of E by 𝒪 E and we study 𝒪 E as a Z Γ -module. In particular we show that the fourth power of the (locally free) class of 𝒪 E is the trivial class. To obtain this result we use Fröhlich’s description of class groups of modules and his representative for the class of E , together with new determinantal congruences for cyclic group rings and corresponding congruences for Gauss sums.

How to cite

top

Taylor, Martin J.. "Galois module structure of rings of integers." Annales de l'institut Fourier 30.3 (1980): 11-48. <http://eudml.org/doc/74455>.

@article{Taylor1980,
abstract = {Let $E/F$ be a Galois extension of number fields with $\Gamma =$ Gal$(E/F)$ and with property that the divisors of $(E:F)$ are non-ramified in $E/\{\bf Q\}$. We denote the ring of integers of $E$ by $\{\cal O\}_E$ and we study $\{\cal O\}_E$ as a $\{\bf Z\}\Gamma $-module. In particular we show that the fourth power of the (locally free) class of $\{\cal O\}_E$ is the trivial class. To obtain this result we use Fröhlich’s description of class groups of modules and his representative for the class of $\{\cal E\}_E$, together with new determinantal congruences for cyclic group rings and corresponding congruences for Gauss sums.},
author = {Taylor, Martin J.},
journal = {Annales de l'institut Fourier},
keywords = {Gauß sums; Galois extension; ring of integers; class groups of modules},
language = {eng},
number = {3},
pages = {11-48},
publisher = {Association des Annales de l'Institut Fourier},
title = {Galois module structure of rings of integers},
url = {http://eudml.org/doc/74455},
volume = {30},
year = {1980},
}

TY - JOUR
AU - Taylor, Martin J.
TI - Galois module structure of rings of integers
JO - Annales de l'institut Fourier
PY - 1980
PB - Association des Annales de l'Institut Fourier
VL - 30
IS - 3
SP - 11
EP - 48
AB - Let $E/F$ be a Galois extension of number fields with $\Gamma =$ Gal$(E/F)$ and with property that the divisors of $(E:F)$ are non-ramified in $E/{\bf Q}$. We denote the ring of integers of $E$ by ${\cal O}_E$ and we study ${\cal O}_E$ as a ${\bf Z}\Gamma $-module. In particular we show that the fourth power of the (locally free) class of ${\cal O}_E$ is the trivial class. To obtain this result we use Fröhlich’s description of class groups of modules and his representative for the class of ${\cal E}_E$, together with new determinantal congruences for cyclic group rings and corresponding congruences for Gauss sums.
LA - eng
KW - Gauß sums; Galois extension; ring of integers; class groups of modules
UR - http://eudml.org/doc/74455
ER -

References

top
  1. [1] Ph. CASSOU-NOGUES, Quelques théorèmes de base normale d'entiers, Ann. Inst. Fourier, 28, 3 (1978), 1-33. Zbl0368.12004
  2. [2] P. DELIGNE, Les constantes des équations fonctionnelles des fonctions L, Modular forms in one variable III, Lecture Notes in Mathematics, 349 (1973), 501-597. Zbl0271.14011MR50 #2128
  3. [3] A. FRÖHLICH, Arithmetic and Galois module structure for tame extensions, J. reine und angew. Math., 286/287 (1976), 380-440. Zbl0385.12004MR55 #5582
  4. [4] A. FRÖHLICH, To appear in the Springer Ergebnisse series. 
  5. [5] A. FRÖHLICH, Galois module structure, Algebraic Number Fields, (Proc. Durham Symposium), Academic Press, 1977, London. Zbl0375.12010
  6. [6] A. FRÖHLICH, Locally free modules over arithmetic orders, J. reine angew. Math., 274/5 (1975), 112-124. Zbl0316.12013MR51 #12794
  7. [7] A. FRÖHLICH and M.J. TAYLOR, The arithmetic theory of local Galois Gauss sums for tame characters, to appear in the Philosophical Transactions of the Royal Society. Zbl0436.12014
  8. [8] T.Y. LAM, Artin exponents of finite groups, J. Algebra, 9 (1968), 94-119. Zbl0277.20006MR37 #304
  9. [9] S. LANG, Algebraic number theory, Addison-Wesley (1970). Zbl0211.38404MR44 #181
  10. [10] J. MARTINET, Character theory and Artin L-functions, Algebraic Number fields, (Proc. Durham Symposium), Academic Press, (1977), London. Zbl0359.12015MR56 #5502
  11. [11] E. NOETHER, Normalbasis bei Körpern ohne höhere Verzweigung, J. reine angew. Math., 167 (1932), 147-152. Zbl0003.14601JFM58.0172.02
  12. [12] J.P. SERRE, Corps locaux, Hermann, Paris, 1968. 
  13. [13] J.P. SERRE, Représentations linéaires des groupes finis, 2nd ed., Hermann, Paris, 1971. Zbl0223.20003MR50 #4718
  14. [14] J. TATE, Local constants, Algebraic Number Fields, (Proc. Durham Symposium), Academic Press, London, 1977. 
  15. [15] M.J. TAYLOR, Galois module structure of relative abelian extensions, J. reine angew. Math., 303/4 (1978), 97-101. Zbl0384.12007MR80e:12006
  16. [16] M.J. TAYLOR, On the self-duality of a ring of integers as a Galois module, Inventiones Mathematicae, 46 (1978), 173-177. Zbl0381.12007MR57 #12460
  17. [17] M.J. TAYLOR, A logarithmic description of locally free classgroups of finite groups, to appear in the Journal of Algebra. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.