High Frequency limit of the Helmholtz Equations
Jean-David Benamou[1]; François Castella[2]; Thodoros Katsaounis[3]; Benoît Perthame[4]
- [1] INRIA-Rocquencourt, BP 105, 78153 Le Chesnay, France
- [2] CNRS et IRMAR, Campus de Beaulieu, Université de Rennes 1, 35042 Rennes Cédex, France
- [3] IACM, FORTH, P.O. Box 1527, Vassilika Boutwn 71110, Heraklion Crete, Greece
- [4] ENS, DMA, 45, rue d’Ulm, 75230 Paris, France
Séminaire Équations aux dérivées partielles (1999-2000)
- Volume: 1999-2000, page 1-25
Access Full Article
topAbstract
topHow to cite
topBenamou, Jean-David, et al. "High Frequency limit of the Helmholtz Equations." Séminaire Équations aux dérivées partielles 1999-2000 (1999-2000): 1-25. <http://eudml.org/doc/11002>.
@article{Benamou1999-2000,
abstract = {We derive the high frequency limit of the Helmholtz equations in terms of quadratic observables. We prove that it can be written as a stationary Liouville equation with source terms. Our method is based on the Wigner Transform, which is a classical tool for evolution dispersive equations. We extend its use to the stationary case after an appropriate scaling of the Helmholtz equation. Several specific difficulties arise here; first, the identification of the source term (which does not share the quadratic aspect) in the limit, then, the lack of $L^\{2\}$ bounds which can be handled with homogeneous Morrey-Campanato estimates, and finally the problem of uniqueness which, at several stage of the proof, is related to outgoing conditions at infinity.},
affiliation = {INRIA-Rocquencourt, BP 105, 78153 Le Chesnay, France; CNRS et IRMAR, Campus de Beaulieu, Université de Rennes 1, 35042 Rennes Cédex, France; IACM, FORTH, P.O. Box 1527, Vassilika Boutwn 71110, Heraklion Crete, Greece; ENS, DMA, 45, rue d’Ulm, 75230 Paris, France},
author = {Benamou, Jean-David, Castella, François, Katsaounis, Thodoros, Perthame, Benoît},
journal = {Séminaire Équations aux dérivées partielles},
language = {eng},
pages = {1-25},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {High Frequency limit of the Helmholtz Equations},
url = {http://eudml.org/doc/11002},
volume = {1999-2000},
year = {1999-2000},
}
TY - JOUR
AU - Benamou, Jean-David
AU - Castella, François
AU - Katsaounis, Thodoros
AU - Perthame, Benoît
TI - High Frequency limit of the Helmholtz Equations
JO - Séminaire Équations aux dérivées partielles
PY - 1999-2000
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1999-2000
SP - 1
EP - 25
AB - We derive the high frequency limit of the Helmholtz equations in terms of quadratic observables. We prove that it can be written as a stationary Liouville equation with source terms. Our method is based on the Wigner Transform, which is a classical tool for evolution dispersive equations. We extend its use to the stationary case after an appropriate scaling of the Helmholtz equation. Several specific difficulties arise here; first, the identification of the source term (which does not share the quadratic aspect) in the limit, then, the lack of $L^{2}$ bounds which can be handled with homogeneous Morrey-Campanato estimates, and finally the problem of uniqueness which, at several stage of the proof, is related to outgoing conditions at infinity.
LA - eng
UR - http://eudml.org/doc/11002
ER -
References
top- S. Agmon, L. Hörmander, Asymptotic properties of solutions of differential equations with simple characteristics, J. Analyse Math., 30 (1976), 1–38. Zbl0335.35013MR466902
- J.A. Barcelo, A. Ruiz, L. Vega, Weighted estimates for Helmholtz equation and some applications, J. of Funct. Anal. , 150 (1997), 356–382. Zbl0890.35028MR1479544
- J.-D. Benamou, Direct computation of multi-valued phase-space solutions of Hamilton-Jacobi equations, to appear in Comm. Pure and Appl. Math. Zbl0935.35032MR1702708
- F. Castella , On the derivation of a quantum Boltzmann equation from the periodic Von-Neumann equation, Math. Mod. An. Num. 33, N. 2 (1999), 329–350. Zbl0954.82023MR1700038
- F. Castella, P. Degond, From the Von-Neumann equation to the Quantum Boltzmann equation in a deterministic framework, Preprint Université de Rennes 1 and C. R. Acad. Sci., t. 329, sér. I (1999), 231–236. Zbl0930.35146MR1711066
- F. Castella, B. Perthame, O. Runborg, High frequency limit in the Helmholtz equation: the case of a general source, in preparation. Zbl1290.35262
- L. Erdös, H.T. Yau, Linear Boltzmann equation as scaling limit of the quantum Lorentz gas, Preprint (1998). Zbl0894.35027MR1605282
- I. Gasser, P. Markowich, B. Perthame, Dispersion and moments lemma revisited, to appear in J. Diff. Eq. Zbl0931.35135
- P. Gérard, Microlocal defect measures, Comm. Partial Diff. Equations 16 (1991), 1761–1794. Zbl0770.35001MR1135919
- P. Gérard, P.A. Markowich, N.J. Mauser, F. Poupaud, Homogeneisation limits and Wigner transforms, Comm. pure and Appl. Math., 50 (1997), 321–357. Zbl0881.35099MR1438151
- J.B. Keller, R. Lewis, Asymptotic methods for partial differential equations: the reduced wave equation and Maxwell’s equation, in Surveys in applied mathematics, eds J.B. Keller, D.McLaughlin and G. Papanicolaou, Plenum Press, New York, 1995. Zbl0848.35068
- C. Kenig, G. Ponce, L. Vega, Small solutions to nonlinear Schroedinger equations, Annales de l’I.H.P., 10, (1993), 255–288. Zbl0786.35121
- P.-L. Lions, T. Paul, Sur les mesures de Wigner, Revista Matemática Iberoamericana, 9 (3) (1993), 553–618. Zbl0801.35117MR1251718
- P.L.Lions, B.Perthame, Lemmes de moments, de moyenne et de dispersion. C. R. Acad. Sc t.314 (série I) (1992), 801–806. Zbl0761.35085MR1166050
- G. Papanicolaou, L. Ryzhik, Waves and Transport. IAS/ Park City Mathematics series. Volume 5 (1997). Zbl0930.35172MR1662832
- B. Perthame, L. Vega, Morrey-Campanato estimates for Helmholtz equations. J. Funct. Anal. 164(2) (1999), 340–355. Zbl0932.35048MR1695559
- B. Perthame, L. Vega, work under progress.
- L. Tartar, H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations, Proc. Roy. Soc. Ed., 115 A (1990), 193–230. Zbl0774.35008MR1069518
- Bo Zhang, Radiation condition and limiting amplitude principle for acoustic propagators with two unbounded media, Proc. Roy. Soc. Ed., 128 A (1998), 173–192. Zbl0897.35044MR1606369
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.