Vorticité dans les équations de Ginzburg-Landau de la supraconductivité

Sylvia Serfaty[1]

  • [1] S. Serfaty, CMLA, ENS Cachan, 61 av du Président Wilson, 94235 Cachan Cedex.

Séminaire Équations aux dérivées partielles (1999-2000)

  • Volume: 1999-2000, page 1-14

How to cite

top

Serfaty, Sylvia. "Vorticité dans les équations de Ginzburg-Landau de la supraconductivité." Séminaire Équations aux dérivées partielles 1999-2000 (1999-2000): 1-14. <http://eudml.org/doc/11003>.

@article{Serfaty1999-2000,
affiliation = {S. Serfaty, CMLA, ENS Cachan, 61 av du Président Wilson, 94235 Cachan Cedex.},
author = {Serfaty, Sylvia},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {Ginzburg-Landau energy functional; critical points; global minimizers; vortices; variational problem; free boundary},
language = {fre},
pages = {1-14},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Vorticité dans les équations de Ginzburg-Landau de la supraconductivité},
url = {http://eudml.org/doc/11003},
volume = {1999-2000},
year = {1999-2000},
}

TY - JOUR
AU - Serfaty, Sylvia
TI - Vorticité dans les équations de Ginzburg-Landau de la supraconductivité
JO - Séminaire Équations aux dérivées partielles
PY - 1999-2000
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1999-2000
SP - 1
EP - 14
LA - fre
KW - Ginzburg-Landau energy functional; critical points; global minimizers; vortices; variational problem; free boundary
UR - http://eudml.org/doc/11003
ER -

References

top
  1. A. Abrikosov, On the Magnetic Properties of Superconductors of the Second Type, Soviet Phys. JETP 5, (1957), 1174-1182. 
  2. L. Almeida et F. Bethuel, Topological Methods for the Ginzburg-Landau Equations, J. Math. Pures Appl., 77, (1998), 1-49. Zbl0904.35023MR1617594
  3. E. Akkermans et K. Mallick, Vortices in mesoscopic superconductors, et Vortices in Ginzburg-Landau billiards, à paraî tre dans J. Phys. A, (1999). Zbl0962.82089MR1732545
  4. A. Aftalion, E. Sandier et S. Serfaty, Pinning Phenomena in the Ginzburg-Landau Model of Superconductivity, en préparation. Zbl1027.35123
  5. H. Berestycki, A. Bonnet et J. Chapman, A Semi-Elliptic System Arising in the Theory of Type-II Superconductivity, Comm. Appl. Nonlinear Anal., 1, n o 3, (1994), 1-21. Zbl0866.35030MR1295490
  6. F. Bethuel, H. Brezis et F. Hélein, Ginzburg-Landau Vortices, Birkhäuser, (1994). Zbl0802.35142MR1269538
  7. A. Bonnet et R. Monneau, Existence of a smooth free-boundary in a superconductor with a Nash-Moser inverse function theorem argument, à paraî tre dans Interfaces and Free Boundaries. Zbl0989.35146
  8. F. Bethuel et T. Rivière, Vortices for a Variational Problem Related to Superconductivity, Annales IHP, Analyse non linéaire, 12, (1995), 243-303. Zbl0842.35119MR1340265
  9. F. Bethuel et T. Rivière, Vorticité dans les modèles de Ginzburg-Landau pour la supraconductivité, Séminaire E.D.P de l’École Polytechnique, exposé XVI, (1994). Zbl0876.35112
  10. S. J. Chapman, J. Rubinstein, et M. Schatzman, A Mean-field Model of Superconducting Vortices, Eur. J. Appl. Math., 7, No. 2, (1996), 97-111. Zbl0849.35135MR1388106
  11. P.-G. DeGennes, Superconductivity of Metal and Alloys, Benjamin, New York and Amsterdam, 1966. Zbl0138.22801
  12. S. Gueron et I. Shafrir, On a Discrete Variational Problem Involving Interacting Particles, SIAM J. Appl. Math. Zbl0962.49025MR1740832
  13. J.F. Rodrigues, Obstacle Problems in Mathematical Physics, Mathematical Studies, North Holland, (1987). Zbl0606.73017MR880369
  14. J. Rubinstein, Six Lectures on Superconductivity, Proc. of the CRM School on “Boundaries, Interfaces, and Transitions". Zbl0921.35161
  15. E. Sandier, Lower Bounds for the Energy of Unit Vector Fields and Applications, J. Functional Analysis, 152, No 2, (1998), 379-403. Zbl0908.58004MR1607928
  16. E. Sandier et S. Serfaty, Global Minimizers for the Ginzburg-Landau Functional below the First Critical Magnetic Field, à paraî tre dans Annales IHP, Analyse non linéaire. Zbl0947.49004
  17. E. Sandier et S. Serfaty, On the Energy of Type-II Superconductors in the Mixed Phase, à paraî tre dans Reviews in Math. Phys. Zbl0964.49006
  18. E. Sandier et S. Serfaty, A Rigorous Derivation of a Free-Boundary Problem Arising in Superconductivity, à paraî tre dans Annales Scientifiques de l’ENS. Zbl1174.35552
  19. V. A. Schweigert, F. M. Peeters et P. Singha Deo, Vortex Phase Diagram for Mesoscopic Superconducting Disks, Phys. Rev. Letters, vol 81, n. 13, (1998). 
  20. D. Saint-James, G. Sarma et E.J. Thomas, Type-II Superconductivity, Pergamon Press, (1969). 
  21. S. Serfaty, Local Minimizers for the Ginzburg-Landau Energy near Critical Magnetic Field, part I, Comm. Contemporary Mathematics, 1 , No. 2, (1999), 213-254. Zbl0944.49007MR1696100
  22. S. Serfaty, Local Minimizers for the Ginzburg-Landau Energy near Critical Magnetic Field, part II, Comm. Contemporary Mathematics, 1, No. 3, (1999), 295-333. Zbl0964.49005MR1707887
  23. S. Serfaty, Stable Configurations in Superconductivity : Uniqueness, Multiplicity and Vortex-Nucleation, Arch. for Rat. Mech. Anal. , 149, No 4, (1999), 329-365. Zbl0959.35154MR1731999
  24. M. Tinkham, Introduction to Superconductivity, 2d edition, McGraw-Hill, 1996. 
  25. D. Tilley et J. Tilley, Superfluidity and Superconductivity, 2d edition, Adam Hilger Ltd., Bristol, (1986). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.