Vorticité dans les équations de Ginzburg-Landau de la supraconductivité
- [1] S. Serfaty, CMLA, ENS Cachan, 61 av du Président Wilson, 94235 Cachan Cedex.
Séminaire Équations aux dérivées partielles (1999-2000)
- Volume: 1999-2000, page 1-14
Access Full Article
topHow to cite
topSerfaty, Sylvia. "Vorticité dans les équations de Ginzburg-Landau de la supraconductivité." Séminaire Équations aux dérivées partielles 1999-2000 (1999-2000): 1-14. <http://eudml.org/doc/11003>.
@article{Serfaty1999-2000,
affiliation = {S. Serfaty, CMLA, ENS Cachan, 61 av du Président Wilson, 94235 Cachan Cedex.},
author = {Serfaty, Sylvia},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {Ginzburg-Landau energy functional; critical points; global minimizers; vortices; variational problem; free boundary},
language = {fre},
pages = {1-14},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Vorticité dans les équations de Ginzburg-Landau de la supraconductivité},
url = {http://eudml.org/doc/11003},
volume = {1999-2000},
year = {1999-2000},
}
TY - JOUR
AU - Serfaty, Sylvia
TI - Vorticité dans les équations de Ginzburg-Landau de la supraconductivité
JO - Séminaire Équations aux dérivées partielles
PY - 1999-2000
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1999-2000
SP - 1
EP - 14
LA - fre
KW - Ginzburg-Landau energy functional; critical points; global minimizers; vortices; variational problem; free boundary
UR - http://eudml.org/doc/11003
ER -
References
top- A. Abrikosov, On the Magnetic Properties of Superconductors of the Second Type, Soviet Phys. JETP 5, (1957), 1174-1182.
- L. Almeida et F. Bethuel, Topological Methods for the Ginzburg-Landau Equations, J. Math. Pures Appl., 77, (1998), 1-49. Zbl0904.35023MR1617594
- E. Akkermans et K. Mallick, Vortices in mesoscopic superconductors, et Vortices in Ginzburg-Landau billiards, à paraî tre dans J. Phys. A, (1999). Zbl0962.82089MR1732545
- A. Aftalion, E. Sandier et S. Serfaty, Pinning Phenomena in the Ginzburg-Landau Model of Superconductivity, en préparation. Zbl1027.35123
- H. Berestycki, A. Bonnet et J. Chapman, A Semi-Elliptic System Arising in the Theory of Type-II Superconductivity, Comm. Appl. Nonlinear Anal., 1, 3, (1994), 1-21. Zbl0866.35030MR1295490
- F. Bethuel, H. Brezis et F. Hélein, Ginzburg-Landau Vortices, Birkhäuser, (1994). Zbl0802.35142MR1269538
- A. Bonnet et R. Monneau, Existence of a smooth free-boundary in a superconductor with a Nash-Moser inverse function theorem argument, à paraî tre dans Interfaces and Free Boundaries. Zbl0989.35146
- F. Bethuel et T. Rivière, Vortices for a Variational Problem Related to Superconductivity, Annales IHP, Analyse non linéaire, 12, (1995), 243-303. Zbl0842.35119MR1340265
- F. Bethuel et T. Rivière, Vorticité dans les modèles de Ginzburg-Landau pour la supraconductivité, Séminaire E.D.P de l’École Polytechnique, exposé XVI, (1994). Zbl0876.35112
- S. J. Chapman, J. Rubinstein, et M. Schatzman, A Mean-field Model of Superconducting Vortices, Eur. J. Appl. Math., 7, No. 2, (1996), 97-111. Zbl0849.35135MR1388106
- P.-G. DeGennes, Superconductivity of Metal and Alloys, Benjamin, New York and Amsterdam, 1966. Zbl0138.22801
- S. Gueron et I. Shafrir, On a Discrete Variational Problem Involving Interacting Particles, SIAM J. Appl. Math. Zbl0962.49025MR1740832
- J.F. Rodrigues, Obstacle Problems in Mathematical Physics, Mathematical Studies, North Holland, (1987). Zbl0606.73017MR880369
- J. Rubinstein, Six Lectures on Superconductivity, Proc. of the CRM School on “Boundaries, Interfaces, and Transitions". Zbl0921.35161
- E. Sandier, Lower Bounds for the Energy of Unit Vector Fields and Applications, J. Functional Analysis, 152, No 2, (1998), 379-403. Zbl0908.58004MR1607928
- E. Sandier et S. Serfaty, Global Minimizers for the Ginzburg-Landau Functional below the First Critical Magnetic Field, à paraî tre dans Annales IHP, Analyse non linéaire. Zbl0947.49004
- E. Sandier et S. Serfaty, On the Energy of Type-II Superconductors in the Mixed Phase, à paraî tre dans Reviews in Math. Phys. Zbl0964.49006
- E. Sandier et S. Serfaty, A Rigorous Derivation of a Free-Boundary Problem Arising in Superconductivity, à paraî tre dans Annales Scientifiques de l’ENS. Zbl1174.35552
- V. A. Schweigert, F. M. Peeters et P. Singha Deo, Vortex Phase Diagram for Mesoscopic Superconducting Disks, Phys. Rev. Letters, vol 81, n. 13, (1998).
- D. Saint-James, G. Sarma et E.J. Thomas, Type-II Superconductivity, Pergamon Press, (1969).
- S. Serfaty, Local Minimizers for the Ginzburg-Landau Energy near Critical Magnetic Field, part I, Comm. Contemporary Mathematics, 1 , No. 2, (1999), 213-254. Zbl0944.49007MR1696100
- S. Serfaty, Local Minimizers for the Ginzburg-Landau Energy near Critical Magnetic Field, part II, Comm. Contemporary Mathematics, 1, No. 3, (1999), 295-333. Zbl0964.49005MR1707887
- S. Serfaty, Stable Configurations in Superconductivity : Uniqueness, Multiplicity and Vortex-Nucleation, Arch. for Rat. Mech. Anal. , 149, No 4, (1999), 329-365. Zbl0959.35154MR1731999
- M. Tinkham, Introduction to Superconductivity, 2d edition, McGraw-Hill, 1996.
- D. Tilley et J. Tilley, Superfluidity and Superconductivity, 2d edition, Adam Hilger Ltd., Bristol, (1986).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.