Global minimizers for the Ginzburg-Landau functional below the first critical magnetic field

Etienne Sandier; Sylvia Serfaty

Annales de l'I.H.P. Analyse non linéaire (2000)

  • Volume: 17, Issue: 1, page 119-145
  • ISSN: 0294-1449

How to cite

top

Sandier, Etienne, and Serfaty, Sylvia. "Global minimizers for the Ginzburg-Landau functional below the first critical magnetic field." Annales de l'I.H.P. Analyse non linéaire 17.1 (2000): 119-145. <http://eudml.org/doc/78484>.

@article{Sandier2000,
author = {Sandier, Etienne, Serfaty, Sylvia},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {minimization problem; Ginzburg-Landau functional; vortex structure; Meissner solution},
language = {eng},
number = {1},
pages = {119-145},
publisher = {Gauthier-Villars},
title = {Global minimizers for the Ginzburg-Landau functional below the first critical magnetic field},
url = {http://eudml.org/doc/78484},
volume = {17},
year = {2000},
}

TY - JOUR
AU - Sandier, Etienne
AU - Serfaty, Sylvia
TI - Global minimizers for the Ginzburg-Landau functional below the first critical magnetic field
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2000
PB - Gauthier-Villars
VL - 17
IS - 1
SP - 119
EP - 145
LA - eng
KW - minimization problem; Ginzburg-Landau functional; vortex structure; Meissner solution
UR - http://eudml.org/doc/78484
ER -

References

top
  1. [1] A. Abrikosov, On the magnetic properties of superconductors of the second type, Soviet Phys. JETP5 (1957) 1174-1182. 
  2. [2] L. Almeida and F. Bethuel, Topological methods for the Ginzburg-Landau equations, J. Math. Pures Appl.77 (1998) 1-49. Zbl0904.35023MR1617594
  3. [3] F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau Vortices, Birkhäuser, 1994. Zbl0802.35142MR1269538
  4. [4] F. Bethuel and T. Rivière, Vorticité dans les modèles de Ginzburg-Landau pour la supraconductivité, Séminaire E. D. P de l'École PolytechniqueXVI (1994). Zbl0876.35112MR1300912
  5. [5] F. Bethuel and T. Rivière, Vortices for a variational problem related to superconductivity, Annales IHP, Analyse non Linéaire12 (1995) 243-303. Zbl0842.35119MR1340265
  6. [6] P.G. Degennes, Superconductivity of Metal and Alloys, Benjamin, New York and Amsterdam, 1966. Zbl0138.22801
  7. [7] R. Jerrard, Lower bounds for generalized Ginzburg-Landau Functionals, SIAM J. Math. Anal.30 (4) (1999) 721-746. Zbl0928.35045MR1684723
  8. [8] J. Rubinstein, Six lectures on superconductivity, in: Proc. CRM School on "Boundaries, Interfaces, and Transitions". Zbl0921.35161
  9. [9] D. Saint-James, G. Sarma and E.J. Thomas, Type-II Superconductivity, Pergamon Press, 1969. 
  10. [10] E. Sandier, Lower bounds for the energy of unit vector fields and applications, J. Functional Analysis152 (2) (1998) 379-403. Zbl0908.58004MR1607928
  11. [11] E. Sandier and S. Serfaty, On the energy of type-II superconductors in the mixed phase, Preprint. Zbl0964.49006MR1794239
  12. [12] S. Serfaty, Solutions stables de l'équation de Ginzburg-Landau en présence de champ magnétique, C. R. A. S. I326 (8) (1998) 955. Zbl0913.35134MR1649937
  13. [13] S. Serfaty, Local minimizers for the Ginzburg-Landau energy near critical magnetic field, Part I, Comm. Contemporary Mathematics, to appear. Zbl0944.49007
  14. [14] S. Serfaty, Local minimizers for the Ginzburg-Landau energy near critical magnetic field, Part II, Comm. Contemporary Mathematics, to appear. Zbl0964.49005
  15. [15] S. Serfaty, Stable configurations in superconductivity: Uniqueness, multiplicity and vortex-nucleation, Arch. for Rat. Mech. Anal., to appear. Zbl0959.35154MR1731999
  16. [16] S. Serfaty, Sur l'équation de Ginzburg-Landau avec champ magnétique, in: Proc. "Journées Équations aux dérivées partielles, Saint-Jean-de-Monts", 1998. Zbl1213.58014
  17. [17] E.M. Stein, Harmonic Analysis, Princeton Math. Series, No 43, Princeton University Press, 1969. 
  18. [18] D. Tilley and J. Tilley, Superfluidity and Superconductivity, 2nd ed., Adam Hilger, Bristol, 1986. 

Citations in EuDML Documents

top
  1. Nelly Andre, Patricia Bauman, Dan Phillips, Vortex pinning with bounded fields for the Ginzburg–Landau equation
  2. Daniel Spirn, Xiaodong Yan, Uniqueness of stable Meissner state solutions of the Chern-Simons-Higgs energy
  3. Etienne Sandier, Sylvia Serfaty, A rigorous derivation of free-boundary problem arising in superconductivity
  4. Sylvia Serfaty, On a model of rotating superfluids
  5. Sylvia Serfaty, On a model of rotating superfluids
  6. Sylvia Serfaty, Vorticité dans les équations de Ginzburg-Landau de la supraconductivité
  7. Tristan Rivière, Ginzburg-Landau vortices : the static model
  8. Bernard Helffer, Bouteilles magnétiques et supraconductivité

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.