Asymptotic Morse inequalities for analytic sheaf cohomology

Yum-Tong Siu

Séminaire Bourbaki (1985-1986)

  • Volume: 28, page 283-297
  • ISSN: 0303-1179

How to cite

top

Siu, Yum-Tong. "Asymptotic Morse inequalities for analytic sheaf cohomology." Séminaire Bourbaki 28 (1985-1986): 283-297. <http://eudml.org/doc/110067>.

@article{Siu1985-1986,
author = {Siu, Yum-Tong},
journal = {Séminaire Bourbaki},
keywords = {holomorphic vector bundles over compact complex manifold; asymptotic formula of Riemann-Roch; Morse inequalities},
language = {eng},
pages = {283-297},
publisher = {Société Mathématique de France},
title = {Asymptotic Morse inequalities for analytic sheaf cohomology},
url = {http://eudml.org/doc/110067},
volume = {28},
year = {1985-1986},
}

TY - JOUR
AU - Siu, Yum-Tong
TI - Asymptotic Morse inequalities for analytic sheaf cohomology
JO - Séminaire Bourbaki
PY - 1985-1986
PB - Société Mathématique de France
VL - 28
SP - 283
EP - 297
LA - eng
KW - holomorphic vector bundles over compact complex manifold; asymptotic formula of Riemann-Roch; Morse inequalities
UR - http://eudml.org/doc/110067
ER -

References

top
  1. [1] M.F. Atiyah, R. Bott, and V.K. Patodi - On the heat equation and the index theorem, Invent. Math.19 (1973), 279-330. Zbl0257.58008MR650828
  2. [2] J. Avron, I. Herbst, and B. Simon - Schrödinger operators with magnetic fields I, Duke Math. J.45 (1978), 847-883. Zbl0399.35029MR518109
  3. [3] J.M. Bismut - The Atiyah-Singer Theorems: a probabilistic approach, I. The Index Theorem, J. Funct. Anal.57 (1984), 56-99. II. The Lefschetz fixed point theorems, J. Funct. Anal.57 (1984), 329-348. Zbl0538.58033MR744920
  4. [4] J.M. Bismut - Large deviations and the Malliavin calculus, Progress in Math. No. 45, Boston: Birkaüser1984. Zbl0537.35003MR755001
  5. [5] J.M. Bismut - Demailly's asymptotic inequalities: a heat equation approach, Preprint 1986. 
  6. [6] P. Demailly - Champs magnétiques et inégalités de Morse pour la d'' cohomologie, C.R.A.S., série I, 301 (1985), 119-122. Zbl0595.58014MR799607
  7. [7] P. Demailly - Champs magnétiques et inégalités de Morse pour la d'' cohomologie, Ann. Inst. Fourier35,4 (1985), 189-229. Zbl0565.58017MR812325
  8. [8] H. Grauert and O. Riemenschneider - Verschwindungssätze für analytische Kohomologiegruppen auf Komplexen Räume, Invent. Math.11 (1970), 263-292. Zbl0202.07602MR302938
  9. [9] K. Kodaira - On Kähler varieties of restricted type (an intrinsic characterization of algebraic varieties), Ann. of Math.60 (1954), 28-48. Zbl0057.14102MR68871
  10. [10] B. Moishezon - On n-dimensional compact varieties with n algebraically independent meromorphic funcitons, Amer. Math. Soc. Translations63 (1967), 51-177. Zbl0186.26204
  11. [11] J.B. Rauch and B.A. Taylor - The Dirichlet problem for the multidimensional Monge-Ampère equation, Rocky Mountain J. Math.7 (1977), 345-364. Zbl0367.35025MR454331
  12. [12] J.-P. Serre - Fonctions automorphes: quelques majorations dans le cas où X/G est compact, Séminaire Cartan1953-54, 2-1 to 2-9. 
  13. [13] C.L. Siegel - Meromorphe Funktionen auf kompakten Mannifaltigkeiten. Nachrichten der Akademie der Wissenschaften in Göttingen, Math.-Phys. Klasse1955, N.4, 71-77. Zbl0064.08201MR74061
  14. [14] Y.-T. Siu - A vanishing theorem for semipositive line bundles over non Kahler manifolds, J. Diff. Geom.19 (1984), 431-452. Zbl0577.32031MR755233
  15. [15] Y.-T. Siu - Some recent results in complex manifold theory related to vanishing theorems for the semi-positive case, Proceedings of the 1984 Bonn Arbeitstagung, SpringerLecture Notes in Mathematics1111 (1985), 169-192. Zbl0577.32032MR797421
  16. [16] Y.-T. Siu - Calculus inequalities derived from holomorphic Morseinequalities, Preprint 1986. 
  17. [17] W. Thimm - Über algebraische Relation zwischen meromorphen Funktionen abgeschlossenen Räumen. Thesis, Königsberg, 1939, 44 pp. JFM68.0176.01
  18. [18] H. Weyl - Das asymptotische Verteilungsgesetz der Eigenwerte linearer partielle Differentialgleichungen, Math. Ann.71 (1911), 441-469 JFM43.0436.01
  19. [19] E. Witten - Supersymmetry and Morse theory, J. Diff. Geom.17 (1982), 661-692. Zbl0499.53056MR683171
  20. [20] E. Witten - Holomorphic Morse inequalities, Taubner-Texte zur Math. 70 Algebraic and Differential Topology, ed. G. M. Rassias (1984), 318-333. Zbl0588.32009MR792703

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.