Asymptotic Morse inequalities for analytic sheaf cohomology

Yum-Tong Siu

Séminaire Bourbaki (1985-1986)

  • Volume: 28, page 283-297
  • ISSN: 0303-1179

How to cite

top

Siu, Yum-Tong. "Asymptotic Morse inequalities for analytic sheaf cohomology." Séminaire Bourbaki 28 (1985-1986): 283-297. <http://eudml.org/doc/110067>.

@article{Siu1985-1986,
author = {Siu, Yum-Tong},
journal = {Séminaire Bourbaki},
keywords = {holomorphic vector bundles over compact complex manifold; asymptotic formula of Riemann-Roch; Morse inequalities},
language = {eng},
pages = {283-297},
publisher = {Société Mathématique de France},
title = {Asymptotic Morse inequalities for analytic sheaf cohomology},
url = {http://eudml.org/doc/110067},
volume = {28},
year = {1985-1986},
}

TY - JOUR
AU - Siu, Yum-Tong
TI - Asymptotic Morse inequalities for analytic sheaf cohomology
JO - Séminaire Bourbaki
PY - 1985-1986
PB - Société Mathématique de France
VL - 28
SP - 283
EP - 297
LA - eng
KW - holomorphic vector bundles over compact complex manifold; asymptotic formula of Riemann-Roch; Morse inequalities
UR - http://eudml.org/doc/110067
ER -

References

top
  1. [1] M.F. Atiyah, R. Bott, and V.K. Patodi - On the heat equation and the index theorem, Invent. Math.19 (1973), 279-330. Zbl0257.58008MR650828
  2. [2] J. Avron, I. Herbst, and B. Simon - Schrödinger operators with magnetic fields I, Duke Math. J.45 (1978), 847-883. Zbl0399.35029MR518109
  3. [3] J.M. Bismut - The Atiyah-Singer Theorems: a probabilistic approach, I. The Index Theorem, J. Funct. Anal.57 (1984), 56-99. II. The Lefschetz fixed point theorems, J. Funct. Anal.57 (1984), 329-348. Zbl0538.58033MR744920
  4. [4] J.M. Bismut - Large deviations and the Malliavin calculus, Progress in Math. No. 45, Boston: Birkaüser1984. Zbl0537.35003MR755001
  5. [5] J.M. Bismut - Demailly's asymptotic inequalities: a heat equation approach, Preprint 1986. 
  6. [6] P. Demailly - Champs magnétiques et inégalités de Morse pour la d'' cohomologie, C.R.A.S., série I, 301 (1985), 119-122. Zbl0595.58014MR799607
  7. [7] P. Demailly - Champs magnétiques et inégalités de Morse pour la d'' cohomologie, Ann. Inst. Fourier35,4 (1985), 189-229. Zbl0565.58017MR812325
  8. [8] H. Grauert and O. Riemenschneider - Verschwindungssätze für analytische Kohomologiegruppen auf Komplexen Räume, Invent. Math.11 (1970), 263-292. Zbl0202.07602MR302938
  9. [9] K. Kodaira - On Kähler varieties of restricted type (an intrinsic characterization of algebraic varieties), Ann. of Math.60 (1954), 28-48. Zbl0057.14102MR68871
  10. [10] B. Moishezon - On n-dimensional compact varieties with n algebraically independent meromorphic funcitons, Amer. Math. Soc. Translations63 (1967), 51-177. Zbl0186.26204
  11. [11] J.B. Rauch and B.A. Taylor - The Dirichlet problem for the multidimensional Monge-Ampère equation, Rocky Mountain J. Math.7 (1977), 345-364. Zbl0367.35025MR454331
  12. [12] J.-P. Serre - Fonctions automorphes: quelques majorations dans le cas où X/G est compact, Séminaire Cartan1953-54, 2-1 to 2-9. 
  13. [13] C.L. Siegel - Meromorphe Funktionen auf kompakten Mannifaltigkeiten. Nachrichten der Akademie der Wissenschaften in Göttingen, Math.-Phys. Klasse1955, N.4, 71-77. Zbl0064.08201MR74061
  14. [14] Y.-T. Siu - A vanishing theorem for semipositive line bundles over non Kahler manifolds, J. Diff. Geom.19 (1984), 431-452. Zbl0577.32031MR755233
  15. [15] Y.-T. Siu - Some recent results in complex manifold theory related to vanishing theorems for the semi-positive case, Proceedings of the 1984 Bonn Arbeitstagung, SpringerLecture Notes in Mathematics1111 (1985), 169-192. Zbl0577.32032MR797421
  16. [16] Y.-T. Siu - Calculus inequalities derived from holomorphic Morseinequalities, Preprint 1986. 
  17. [17] W. Thimm - Über algebraische Relation zwischen meromorphen Funktionen abgeschlossenen Räumen. Thesis, Königsberg, 1939, 44 pp. JFM68.0176.01
  18. [18] H. Weyl - Das asymptotische Verteilungsgesetz der Eigenwerte linearer partielle Differentialgleichungen, Math. Ann.71 (1911), 441-469 JFM43.0436.01
  19. [19] E. Witten - Supersymmetry and Morse theory, J. Diff. Geom.17 (1982), 661-692. Zbl0499.53056MR683171
  20. [20] E. Witten - Holomorphic Morse inequalities, Taubner-Texte zur Math. 70 Algebraic and Differential Topology, ed. G. M. Rassias (1984), 318-333. Zbl0588.32009MR792703

NotesEmbed ?

top

You must be logged in to post comments.