Asymptotic Morse inequalities for pseudoconcave manifolds

George Marinescu

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1996)

  • Volume: 23, Issue: 1, page 27-55
  • ISSN: 0391-173X

How to cite

top

Marinescu, George. "Asymptotic Morse inequalities for pseudoconcave manifolds." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 23.1 (1996): 27-55. <http://eudml.org/doc/84225>.

@article{Marinescu1996,
author = {Marinescu, George},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {pseudoconcave manifold; Moishezon manifold; Morse inequalities},
language = {eng},
number = {1},
pages = {27-55},
publisher = {Scuola normale superiore},
title = {Asymptotic Morse inequalities for pseudoconcave manifolds},
url = {http://eudml.org/doc/84225},
volume = {23},
year = {1996},
}

TY - JOUR
AU - Marinescu, George
TI - Asymptotic Morse inequalities for pseudoconcave manifolds
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1996
PB - Scuola normale superiore
VL - 23
IS - 1
SP - 27
EP - 55
LA - eng
KW - pseudoconcave manifold; Moishezon manifold; Morse inequalities
UR - http://eudml.org/doc/84225
ER -

References

top
  1. [1] A. Andreotti, Théorèmes de dépendence algébrique sur les espaces complexes pseudoconcaves, Bull. Soc. Math. France, 91 (1963), 1-38. Zbl0113.06403MR152674
  2. [2] A. Andreotti - H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, 90 (1962), 193-259. Zbl0106.05501MR150342
  3. [3] A. Andreotti - Y.T. Siu, Projective embeddings of pseudoconcave speces, Ann. Scuola Norm. Sup. Pisa Cl. Sci.24 (1970), 231-278. Zbl0195.36901MR265633
  4. [4] A. Andreotti - E. Vesentini, Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Publ. Math. I.H.E.S., 25 (1965), 81-150. Zbl0138.06604MR175148
  5. [5] T. Bouche, Inégalités de Morse pour la d''-cohomologie sur une variété non-compacte, Ann. Sci. École Norm. Sup.22 (1989), 501-513. Zbl0693.32016MR1026747
  6. [6] L. Bonavero, Holomorphic Morse inequalities for singular hermitian metrics, Preprint n. 256, Inst. Fourier, Grenoble, 1993. Zbl0799.32023MR1257232
  7. [7] L. Boutet De Monvel, Intégration des équations de Cauchy-Riemann induites formelles, Sém. Goulaouic-Lions-Schzartz, Ec. Polytéchnique, 1974-1975. Zbl0317.58003MR409893
  8. [8] J.P.- Demailly, Champs magnétiques et inégalités de Morse pour la d''-cohomologie, Ann. Inst. Fourier (Grenoble) 35 (1985), 189-239. Zbl0565.58017MR812325
  9. [9] J.P.- Demailly, Sur l'identité de Bochner-Kodaira-Nakano en géométrie hermitienne, Lecture Notes in Math., vol. 1198, Spinger-Verlag, Berlin, 1986, 88-97. Zbl0594.32031MR874763
  10. [10] E. Getseler, An analogue of Demailly's inequality for strictly pseudoconvex CR manifolds, J. Differential Geom.29 (1989), 233-290. Zbl0714.58053
  11. [11] H. Grauert, Charakterisierung der Holomorphgebiete durch die vollständige Kählersche Metrik, Math. Ann.131 (1956), 38-75. Zbl0073.30203MR77651
  12. [12] H. Grauert - O. Riemenschneider, Verschwindungssätze für analytische Kohomologiegruppen auf Komplexen Räume, Invent. Math.11 (1970), 263-292. Zbl0202.07602MR302938
  13. [13] H. Hironaka - H. Rossi, On the equivalence of imbeddings of exceptional complex spaces, Math. Ann.79 (1964), 313-333. Zbl0136.20801MR171784
  14. [14] L. Hörmander, L2-estimates and existence theorems for the ∂ operator, Acta Math.113 (1965), 89-152. Zbl0158.11002
  15. [15] B. Moishezon, On n-dimensional compact varieties with n algebraically independent functions, Amer. Math. Soc. Transl.63 (1967), 51-177. Zbl0186.26204
  16. [16] T. Ohsawa, Hodge Spectral Sequence and Symmetry on Compact Kähler Spaces, Publ. Res. Inst. Math. Sci.23 (1987), 613-625. Zbl0635.32008MR918517
  17. [17] T. Ohsawa, Isomorphism theorems for cohomology groups on weakly 1-complete manifolds, Publ. Res. Inst. Math. Sci.18 (1982), 192-232. Zbl0526.32016MR660827
  18. [18] H. Rossi, Attaching analytic spaces to an anlytic space along a pseudoconcave boundary, Conference on complex analysis, Minneapolis, 1964, Springer, 1965. Zbl0143.30301MR176106
  19. [19] C.L. Siegel, Meromorphe Funktionen auf kompakten analytischen Mannigfaltigkeiten, Nachr, Akad. Wiss. Göttingen, 4 (1955), 71-77. Zbl0064.08201MR74061
  20. [20] Y.T. Siu, Absolute gap-sheaves and extensions of coherent analytic sheaves, Trans. Amer. Math. Soc.141 (1969), 361-376. Zbl0184.11001MR243117
  21. [21] Y.T. Siu, Asymptotic Morse inequalities for analytic sheaf cohomology, Sém. Bourbaki, 666 (1986). MR880038
  22. [22] V. Vâjâitu, Some convexity properties of morphism of complex spaces, Math. Z.217 (1994), 215-245. Zbl0806.32006MR1296395
  23. [23] E. Vesentini, Lectures on Levi convexity of complex manifolds and cohomology vanishing theorems. Tata Institute of Fundamental Research, 1967. Zbl0206.36603MR232016

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.