Bifurcations de points fixes elliptiques

Jean-Christophe Yoccoz

Séminaire Bourbaki (1985-1986)

  • Volume: 28, page 313-334
  • ISSN: 0303-1179

How to cite

top

Yoccoz, Jean-Christophe. "Bifurcations de points fixes elliptiques." Séminaire Bourbaki 28 (1985-1986): 313-334. <http://eudml.org/doc/110069>.

@article{Yoccoz1985-1986,
author = {Yoccoz, Jean-Christophe},
journal = {Séminaire Bourbaki},
keywords = {elliptic points; area-preserving condition; Hopf bifurcations; degenerated Hopf bifurcation},
language = {fre},
pages = {313-334},
publisher = {Société Mathématique de France},
title = {Bifurcations de points fixes elliptiques},
url = {http://eudml.org/doc/110069},
volume = {28},
year = {1985-1986},
}

TY - JOUR
AU - Yoccoz, Jean-Christophe
TI - Bifurcations de points fixes elliptiques
JO - Séminaire Bourbaki
PY - 1985-1986
PB - Société Mathématique de France
VL - 28
SP - 313
EP - 334
LA - fre
KW - elliptic points; area-preserving condition; Hopf bifurcations; degenerated Hopf bifurcation
UR - http://eudml.org/doc/110069
ER -

References

top
  1. [1] A. Chenciner - La dynamique au voisinage d'un point fixe elliptique conservatif : de Poincaré et Birkhoff à Aubry et Mather, Sém. Bourbaki, 1983/84, exposé n° 622, Astérisque121-122(1985), 147-170. Zbl0582.58013MR768958
  2. [2] G.D. Birkhoff - Surface transformations and their dynamical applications, Acta Mathematicae43(1920), ou Collected Mathematical Papers, Vol. II, Dover, New York (1968). JFM47.0985.03
  3. [3] M.R. Herman - Sur les courbes invariantes par les difféomorphismes de l'anneau, Vol. I, Astérisque103-104(1983). Zbl0532.58011
  4. [4] J. Moser - On invariant curves of area-preserving mappings of an annulus, Nach. Akad. Wiss., Math. Phys. K1.II (1962), 1-20. Zbl0107.29301MR147741
  5. [5] J. Moser - Stable and random motions in dynamical systems, Annals of math. studies77, Princeton Univ. Press, Princeton, 1973. Zbl0271.70009MR442980
  6. [6] H. Rüssmann - Über invariante Kurven differenzierbarer Abbildungen eines Kreisrings, Nach. Akad. Wiss, Göttingen, Math. Phys. Kl.II (1970), 67-105. Zbl0201.11202MR273156
  7. [7] A. Chenciner - Bifurcations de difféomorphismes de R2 au voisinage d'un point fixe elliptique, Cours à l'École des Houches, Juillet 1981, North Holland, (1983). Zbl0582.58025
  8. [8] E. Zehnder - Homoclinic points near elliptic fixed points, Comm. on Pure and Appl. Math., XXVI, (1973), 131-182. Zbl0261.58002MR345134
  9. [9] A. Chenciner - Bifurcations de points fixes elliptiques, I. Courbes invariantes, Publ. I.H.E.S.61 (1985), 67-127. Zbl0566.58025MR783349
  10. [10] V.I. Arnold - Small denominators I ; on the mappings of a circle into itself, Izvestia Akad. Nauk., serie Math., 25, 1 (1961), 21-86 ou Transl. Amer. Math. Soc., 2nd series, 46, 213-284. Zbl0152.41905MR140699
  11. [11] G.R. Hall - Bifurcation of an attracting invariant circle : a Denjoy attractor, Preprint University of Minnesota. MR743029
  12. [12] R.S. Hamilton - The inverse function theorem of Nash and Moser, Preprint Cornell University, 1974. MR656198
  13. [13] M.R. Herman - Démonstration du théorème de la courbe translatée et existence des tores invariants, Cours à l'E.N.S., 1980. 
  14. [14] J.-B. Bost - Tores invariants des systèmes dynamiques hamiltoniens, Sém. Bourbaki, 1984/85, exposé n° 639, Astérisque133-134(1986), 113-157. Zbl0602.58021MR837218
  15. [15] R. Douady - Applications du théorème des tores invariants, Thèse de 3e cycle, Université de Paris 7 (1982). 
  16. [16] G.D. Birkhoff - Sur certaines courbes fermées remarquables, Bull. Soc. Math. de France, 60, 1932, 1-26. Zbl0005.22002MR1504983
  17. [17] P. Le Calvez - Existence d'orbites quasi-périodiques dans les attracteurs de Birkhoff, à paraître aux Commun. Math. Phys. (1986). Zbl0602.58031MR859817
  18. [18] A. Chenciner - Bifurcations de points fixes elliptiques II. Orbites périodiques et ensembles de Cantor invariants, Invent. Math.80, 1985, 81-106. Zbl0578.58031MR784530
  19. [19] A. Chenciner - Bifurcations de points fixes elliptiques III. Orbites périodiques de "petites" périodes et élimination résonante des couples de courbes invariantes, à paraître. Zbl0712.58044
  20. [20] A. Chenciner - Points homoclines au voisinage d'une bifurcation de Hopf dégénénée de difféomorphismes de R2, C.R.A.S.294, Série I, 269-272, 1982. Zbl0509.58014MR653749
  21. [21] A. Chenciner - Resonant elimination of a couple of invariant closed curves in the neighbourhood of a degenerate Hopf bifurcation of diffeomorphisms of R2 , IIASA Workshop on dynamic processes, Sopron, Sept. 1985, à paraître. Zbl0653.58027
  22. [22] A. Chenciner - Hamiltonian-like phenomena in saddle-node bifurcations of invariant curves for plane diffeomorphisms, Proc. of the Conf. Sing. and Dyn. Syst., Heraklion1983, North Holland (1984). Zbl0561.58036MR806175
  23. [23] K. Hockett, P. Holmes - Josephson's junction, annulus maps, Birkhoff attractors, Horseshoes and rotation sets, Preprint, 1985. Zbl0582.58020
  24. [24] D.G. Aronson, M.A. Chory, G.R. Hall, R.P. McGehee - Bifurcations from an invariant circle for 2-parameter families of maps of the plane : a computer assisted study, Commun. Math. Phys.83, 303-354 (1983). Zbl0499.70034MR649808
  25. [25] J.R. Johnson - Some properties of a 3-parameter family of diffeomorphisms of the plane near a transcritical Hopf bifurcation, Thesis, University of Minnesota, July 1985. 
  26. [26] J. Los - Phénomènes de petits diviseurs dans les dédoublements de courbes invariantes, Thèse, Université de ParisVII, Juin 1986 MR977378

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.