A KAM phenomenon for singular holomorphic vector fields
Publications Mathématiques de l'IHÉS (2005)
- Volume: 102, page 99-165
- ISSN: 0073-8301
Access Full Article
topAbstract
topHow to cite
topStolovitch, Laurent. "A KAM phenomenon for singular holomorphic vector fields." Publications Mathématiques de l'IHÉS 102 (2005): 99-165. <http://eudml.org/doc/104215>.
@article{Stolovitch2005,
abstract = {Let X be a germ of holomorphic vector field at the origin of Cn and vanishing there. We assume that X is a good perturbation of a “nondegenerate” singular completely integrable system. The latter is associated to a family of linear diagonal vector fields which is assumed to have nontrivial polynomial first integrals (they are generated by the so called “resonant monomials”). We show that X admits many invariant analytic subsets in a neighborhood of the origin. These are biholomorphic to the intersection of a polydisc with an analytic set of the form “resonant monomials = constants”. Such a biholomorphism conjugates the restriction of X to one of its invariant varieties to the restriction of a linear diagonal vector field to a toric variety. Moreover, we show that the set of “frequencies” defining the invariant sets is of positive measure.},
author = {Stolovitch, Laurent},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {Hamiltonian systems; KAM theory; holomorphic vector field; (formal) normal form; (formal) first integral; resonant monomial; holomorphic invariant manifold; persistence},
language = {eng},
pages = {99-165},
publisher = {Springer},
title = {A KAM phenomenon for singular holomorphic vector fields},
url = {http://eudml.org/doc/104215},
volume = {102},
year = {2005},
}
TY - JOUR
AU - Stolovitch, Laurent
TI - A KAM phenomenon for singular holomorphic vector fields
JO - Publications Mathématiques de l'IHÉS
PY - 2005
PB - Springer
VL - 102
SP - 99
EP - 165
AB - Let X be a germ of holomorphic vector field at the origin of Cn and vanishing there. We assume that X is a good perturbation of a “nondegenerate” singular completely integrable system. The latter is associated to a family of linear diagonal vector fields which is assumed to have nontrivial polynomial first integrals (they are generated by the so called “resonant monomials”). We show that X admits many invariant analytic subsets in a neighborhood of the origin. These are biholomorphic to the intersection of a polydisc with an analytic set of the form “resonant monomials = constants”. Such a biholomorphism conjugates the restriction of X to one of its invariant varieties to the restriction of a linear diagonal vector field to a toric variety. Moreover, we show that the set of “frequencies” defining the invariant sets is of positive measure.
LA - eng
KW - Hamiltonian systems; KAM theory; holomorphic vector field; (formal) normal form; (formal) first integral; resonant monomial; holomorphic invariant manifold; persistence
UR - http://eudml.org/doc/104215
ER -
References
top- 1. V. I. Arnold, The stability of the equlibrium position of a hamiltonian system of ordinary differential equations in the general elliptique case, Soviet Math. Dokl., 2 (1961), 247–249. Zbl0135.42601
- 2. V. I. Arnold, Proof of a theorem by A. N. Kolmogorov on the persistence of quasi-periodic motions under small perturbations of the hamiltonian, Russ. Math. Surv., 18 (1963), 9–36. Zbl0129.16606MR163025
- 3. V. I. Arnold, Small denominators and the problem of stability of motion in the classical and celestian mechanics, Russ. Math. Surv., 18 (1963), 85–191. Zbl0135.42701MR170705
- 4. V. I. Arnold, Méthodes mathématiques de la mécanique classique, Mir, 1976. Zbl0385.70001MR474391
- 5. V. I. Arnold, Chapitres supplémentaires de la théorie des équations différentielles ordinaires, Mir, 1980. Zbl0455.34001MR626685
- 6. V. I. Arnold (ed.), Dynamical systems III, vol. 28 of Encyclopaedia of Mathematical Sciences, Springer, 1988. Zbl0623.00023MR923953
- 7. V. I. Bakhtin, A strengthened extremal property of Chebyshev polynomials, Moscow Univ. Math. Bull., 42 (1987), 24–26. Zbl0645.33014MR884508
- 8. V. I. Bernik and M. M. Dodson, Metric diophantine approximation on manifolds, vol. 137 of Cambridge Tracts in Mathematics, Cambridge University Press, 1999. Zbl0933.11040MR1727177
- 9. H. W. Broer, G. W. Huitema, and M. B. Sevryuk, Quasi-periodic motions in famillies of dynamical systems, Lect. Notes Math. 1645, Springer, 1996. Zbl0870.58087MR1484969
- 10. Yu. I. Bibikov, Local theory of nonlinear analytic ordinary differential equations, Lect. Notes Math. 702, Springer, 1979. Zbl0404.34005MR547669
- 11. J.-B. Bost, Tores invariants des systèmes dynamiques hamiltoniens (d’après Kolomogorov, Arnol’d, Moser, Rüssmann, Zehnder, Herman, Pöschel, ...), in Séminaire Bourbaki, Astérisque, 133–134 (1986), 113–157, Société Mathématiques de France, exposé 639. Zbl0602.58021
- 12. Yu. I. Bibikov and V. A. Pliss, On the existence of invariant tori in a neighbourhood of the zero solution of a system of ordinary differential equations, Differential Equations, pp. 967–976, 1967. Zbl0233.34051
- 13. A. D. Bryuno, The normal form of a Hamiltonian system, Usp. Mat. Nauk, 43 (1988), 23–56, 247. Zbl0642.70009MR937018
- 14. A. Chenciner, Bifurcations de points fixes elliptiques, Publ. Math., Inst. Hautes Étud. Sci., 61 (1985), 67–127. Zbl0566.58025MR783349
- 15. E. M. Chirka, Complex analytic sets, vol. 46 of Mathematics and its Applications, Kluwer, 1989. Zbl0683.32002MR1111477
- 16. L. H. Eliasson, Perturbations of stable invariant tori for Hamiltonian systems, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser., 15 (1988), 115–147. Zbl0685.58024MR1001032
- 17. L. H. Eliasson, Absolutely convergent series expansions for quasi periodic motions, Math. Phys. Electron. J., 2, Paper 4, 33pp. (electronic), 1996. Zbl0896.34035MR1399458
- 18. M. R. Herman, Sur les courbes invariantes par les difféomorphisme de l’anneau, vol. 1, Astérisque, 103–104 (1983), Société Mathématiques de France. Zbl0532.58011
- 19. M. R. Herman, Sur les courbes invariantes par les difféomorphisme de l’anneau, vol. 2, Astérisque, 144 (1986), Société Mathématiques de France. Zbl0613.58021
- 20. D. Y. Kleinbock and G. A. Margulis, Flows on homogeneous spaces and Diophantine approximations on manifolds, Ann. Math., 148 (1998), 339–360. Zbl0922.11061MR1652916
- 21. A. N. Kolmogorov, On the preservation of conditionally periodic motions under small variations of the hamilton function, Dokl. Akad. Nauk SSSR, 98 (1954), 527–530. English translation in “Selected Works”, Kluwer. Zbl0056.31502
- 22. A. N. Kolmogorov, The general theory of dynamical systems and classical mechanics, in Proceedings of International Congress of Mathematicians (Amsterdam, 1954), vol. 1, pp. 315–333, North-Holland, 1957, English translation in “Collected Works”, Kluwer.
- 23. J. Moser, On invariant curves of aera-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl. II (1962), 1–20. Zbl0107.29301MR147741
- 24. J. Moser, Stable and random motions in dynamical systems, with special emphasis on celestian mechanics, vol. 77 of Ann. Math. Studies, Princeton University Press, 1973. Zbl0271.70009MR442980
- 25. H. Rüssmann, Kleine Nenner I: Über invariante Kurven differenzierbarer Abbildungen eines Kreisringes, Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl. II (1970), 67–105. Zbl0201.11202MR273156
- 26. H. Rüssmann, Kleine Nenner II: Bemerkungen zur Newtonschen Methode, Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl. II (1972), 1–10. Zbl0255.30003MR309297
- 27. H. Rüssmann, Invariant tori in non-degenerate nearly integrable Hamiltonian systems, Regul. Chaotic Dyn., 6 (2001), 119–204. Zbl0992.37050MR1843664
- 28. C. L. Siegel and J. K. Moser, Lectures on Celestian Mechanics, Springer, 1971. Zbl0817.70001MR502448
- 29. S. Sternberg, Celestial Mechanics, Part I, W. A. Benjamin, 1969. Zbl0293.70013
- 30. S. Sternberg, Celestial Mechanics, Part II, W. A. Benjamin, 1969. Zbl0194.56702
- 31. L. Stolovitch, Complète intégrabilité singulière, C. R. Acad. Sci., Paris, Sér. I, Math., 326 (1998), 733–736. Zbl0917.32029MR1641778
- 32. L. Stolovitch, Singular complete integrability, Publ. Math., Inst. Hautes Étud. Sci., 91 (2000), 133–210. Zbl0997.32024MR1828744
- 33. L. Stolovitch, Un phénomène de type KAM, non symplectique, pour les champs de vecteurs holomorphes singuliers, C. R. Acad. Sci, Paris, Sér. I, Math., 332 (2001), 545–550. Zbl0997.32025MR1834067
- 34. L. Stolovitch, Normalisation holomorphe d’algèbres de type Cartan de champs de vecteurs holomorphes singuliers, Ann. Math., 161 (2005), 589–612. Zbl1080.32019
- 35. J.-C. Yoccoz, Birfurcations de points fixes elliptiques (d’après A. Chenciner), in Séminaire Bourbaki, Astérisque, 145–146 (1987), 313–334, Société Mathématiques de France, exposé 668. Zbl0616.58035
- 36. J.-C. Yoccoz, Travaux de Herman sur les tores invariants, in Séminaire Bourbaki, Astérisque, 206 (1992), 311–344, Société Mathématique de France, exposé 754. Zbl0791.58044MR1206072
- 37. E. Zehnder, Generalized implicit function theorems with applications to some small divisor problems I, Commun. Pure Appl. Math., 28 (1975), 91–140. Zbl0309.58006MR380867
- 38. E. Zehnder, Generalized implicit function theorems with applications to some small divisor problems II, Commun. Pure Appl. Math., 29 (1976), 49–111. Zbl0334.58009MR426055
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.