A KAM phenomenon for singular holomorphic vector fields

Laurent Stolovitch

Publications Mathématiques de l'IHÉS (2005)

  • Volume: 102, page 99-165
  • ISSN: 0073-8301

Abstract

top
Let X be a germ of holomorphic vector field at the origin of Cn and vanishing there. We assume that X is a good perturbation of a “nondegenerate” singular completely integrable system. The latter is associated to a family of linear diagonal vector fields which is assumed to have nontrivial polynomial first integrals (they are generated by the so called “resonant monomials”). We show that X admits many invariant analytic subsets in a neighborhood of the origin. These are biholomorphic to the intersection of a polydisc with an analytic set of the form “resonant monomials = constants”. Such a biholomorphism conjugates the restriction of X to one of its invariant varieties to the restriction of a linear diagonal vector field to a toric variety. Moreover, we show that the set of “frequencies” defining the invariant sets is of positive measure.

How to cite

top

Stolovitch, Laurent. "A KAM phenomenon for singular holomorphic vector fields." Publications Mathématiques de l'IHÉS 102 (2005): 99-165. <http://eudml.org/doc/104215>.

@article{Stolovitch2005,
abstract = {Let X be a germ of holomorphic vector field at the origin of Cn and vanishing there. We assume that X is a good perturbation of a “nondegenerate” singular completely integrable system. The latter is associated to a family of linear diagonal vector fields which is assumed to have nontrivial polynomial first integrals (they are generated by the so called “resonant monomials”). We show that X admits many invariant analytic subsets in a neighborhood of the origin. These are biholomorphic to the intersection of a polydisc with an analytic set of the form “resonant monomials = constants”. Such a biholomorphism conjugates the restriction of X to one of its invariant varieties to the restriction of a linear diagonal vector field to a toric variety. Moreover, we show that the set of “frequencies” defining the invariant sets is of positive measure.},
author = {Stolovitch, Laurent},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {Hamiltonian systems; KAM theory; holomorphic vector field; (formal) normal form; (formal) first integral; resonant monomial; holomorphic invariant manifold; persistence},
language = {eng},
pages = {99-165},
publisher = {Springer},
title = {A KAM phenomenon for singular holomorphic vector fields},
url = {http://eudml.org/doc/104215},
volume = {102},
year = {2005},
}

TY - JOUR
AU - Stolovitch, Laurent
TI - A KAM phenomenon for singular holomorphic vector fields
JO - Publications Mathématiques de l'IHÉS
PY - 2005
PB - Springer
VL - 102
SP - 99
EP - 165
AB - Let X be a germ of holomorphic vector field at the origin of Cn and vanishing there. We assume that X is a good perturbation of a “nondegenerate” singular completely integrable system. The latter is associated to a family of linear diagonal vector fields which is assumed to have nontrivial polynomial first integrals (they are generated by the so called “resonant monomials”). We show that X admits many invariant analytic subsets in a neighborhood of the origin. These are biholomorphic to the intersection of a polydisc with an analytic set of the form “resonant monomials = constants”. Such a biholomorphism conjugates the restriction of X to one of its invariant varieties to the restriction of a linear diagonal vector field to a toric variety. Moreover, we show that the set of “frequencies” defining the invariant sets is of positive measure.
LA - eng
KW - Hamiltonian systems; KAM theory; holomorphic vector field; (formal) normal form; (formal) first integral; resonant monomial; holomorphic invariant manifold; persistence
UR - http://eudml.org/doc/104215
ER -

References

top
  1. 1. V. I. Arnold, The stability of the equlibrium position of a hamiltonian system of ordinary differential equations in the general elliptique case, Soviet Math. Dokl., 2 (1961), 247–249. Zbl0135.42601
  2. 2. V. I. Arnold, Proof of a theorem by A. N. Kolmogorov on the persistence of quasi-periodic motions under small perturbations of the hamiltonian, Russ. Math. Surv., 18 (1963), 9–36. Zbl0129.16606MR163025
  3. 3. V. I. Arnold, Small denominators and the problem of stability of motion in the classical and celestian mechanics, Russ. Math. Surv., 18 (1963), 85–191. Zbl0135.42701MR170705
  4. 4. V. I. Arnold, Méthodes mathématiques de la mécanique classique, Mir, 1976. Zbl0385.70001MR474391
  5. 5. V. I. Arnold, Chapitres supplémentaires de la théorie des équations différentielles ordinaires, Mir, 1980. Zbl0455.34001MR626685
  6. 6. V. I. Arnold (ed.), Dynamical systems III, vol. 28 of Encyclopaedia of Mathematical Sciences, Springer, 1988. Zbl0623.00023MR923953
  7. 7. V. I. Bakhtin, A strengthened extremal property of Chebyshev polynomials, Moscow Univ. Math. Bull., 42 (1987), 24–26. Zbl0645.33014MR884508
  8. 8. V. I. Bernik and M. M. Dodson, Metric diophantine approximation on manifolds, vol. 137 of Cambridge Tracts in Mathematics, Cambridge University Press, 1999. Zbl0933.11040MR1727177
  9. 9. H. W. Broer, G. W. Huitema, and M. B. Sevryuk, Quasi-periodic motions in famillies of dynamical systems, Lect. Notes Math. 1645, Springer, 1996. Zbl0870.58087MR1484969
  10. 10. Yu. I. Bibikov, Local theory of nonlinear analytic ordinary differential equations, Lect. Notes Math. 702, Springer, 1979. Zbl0404.34005MR547669
  11. 11. J.-B. Bost, Tores invariants des systèmes dynamiques hamiltoniens (d’après Kolomogorov, Arnol’d, Moser, Rüssmann, Zehnder, Herman, Pöschel, ...), in Séminaire Bourbaki, Astérisque, 133–134 (1986), 113–157, Société Mathématiques de France, exposé 639. Zbl0602.58021
  12. 12. Yu. I. Bibikov and V. A. Pliss, On the existence of invariant tori in a neighbourhood of the zero solution of a system of ordinary differential equations, Differential Equations, pp. 967–976, 1967. Zbl0233.34051
  13. 13. A. D. Bryuno, The normal form of a Hamiltonian system, Usp. Mat. Nauk, 43 (1988), 23–56, 247. Zbl0642.70009MR937018
  14. 14. A. Chenciner, Bifurcations de points fixes elliptiques, Publ. Math., Inst. Hautes Étud. Sci., 61 (1985), 67–127. Zbl0566.58025MR783349
  15. 15. E. M. Chirka, Complex analytic sets, vol. 46 of Mathematics and its Applications, Kluwer, 1989. Zbl0683.32002MR1111477
  16. 16. L. H. Eliasson, Perturbations of stable invariant tori for Hamiltonian systems, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser., 15 (1988), 115–147. Zbl0685.58024MR1001032
  17. 17. L. H. Eliasson, Absolutely convergent series expansions for quasi periodic motions, Math. Phys. Electron. J., 2, Paper 4, 33pp. (electronic), 1996. Zbl0896.34035MR1399458
  18. 18. M. R. Herman, Sur les courbes invariantes par les difféomorphisme de l’anneau, vol. 1, Astérisque, 103–104 (1983), Société Mathématiques de France. Zbl0532.58011
  19. 19. M. R. Herman, Sur les courbes invariantes par les difféomorphisme de l’anneau, vol. 2, Astérisque, 144 (1986), Société Mathématiques de France. Zbl0613.58021
  20. 20. D. Y. Kleinbock and G. A. Margulis, Flows on homogeneous spaces and Diophantine approximations on manifolds, Ann. Math., 148 (1998), 339–360. Zbl0922.11061MR1652916
  21. 21. A. N. Kolmogorov, On the preservation of conditionally periodic motions under small variations of the hamilton function, Dokl. Akad. Nauk SSSR, 98 (1954), 527–530. English translation in “Selected Works”, Kluwer. Zbl0056.31502
  22. 22. A. N. Kolmogorov, The general theory of dynamical systems and classical mechanics, in Proceedings of International Congress of Mathematicians (Amsterdam, 1954), vol. 1, pp. 315–333, North-Holland, 1957, English translation in “Collected Works”, Kluwer. 
  23. 23. J. Moser, On invariant curves of aera-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl. II (1962), 1–20. Zbl0107.29301MR147741
  24. 24. J. Moser, Stable and random motions in dynamical systems, with special emphasis on celestian mechanics, vol. 77 of Ann. Math. Studies, Princeton University Press, 1973. Zbl0271.70009MR442980
  25. 25. H. Rüssmann, Kleine Nenner I: Über invariante Kurven differenzierbarer Abbildungen eines Kreisringes, Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl. II (1970), 67–105. Zbl0201.11202MR273156
  26. 26. H. Rüssmann, Kleine Nenner II: Bemerkungen zur Newtonschen Methode, Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl. II (1972), 1–10. Zbl0255.30003MR309297
  27. 27. H. Rüssmann, Invariant tori in non-degenerate nearly integrable Hamiltonian systems, Regul. Chaotic Dyn., 6 (2001), 119–204. Zbl0992.37050MR1843664
  28. 28. C. L. Siegel and J. K. Moser, Lectures on Celestian Mechanics, Springer, 1971. Zbl0817.70001MR502448
  29. 29. S. Sternberg, Celestial Mechanics, Part I, W. A. Benjamin, 1969. Zbl0293.70013
  30. 30. S. Sternberg, Celestial Mechanics, Part II, W. A. Benjamin, 1969. Zbl0194.56702
  31. 31. L. Stolovitch, Complète intégrabilité singulière, C. R. Acad. Sci., Paris, Sér. I, Math., 326 (1998), 733–736. Zbl0917.32029MR1641778
  32. 32. L. Stolovitch, Singular complete integrability, Publ. Math., Inst. Hautes Étud. Sci., 91 (2000), 133–210. Zbl0997.32024MR1828744
  33. 33. L. Stolovitch, Un phénomène de type KAM, non symplectique, pour les champs de vecteurs holomorphes singuliers, C. R. Acad. Sci, Paris, Sér. I, Math., 332 (2001), 545–550. Zbl0997.32025MR1834067
  34. 34. L. Stolovitch, Normalisation holomorphe d’algèbres de type Cartan de champs de vecteurs holomorphes singuliers, Ann. Math., 161 (2005), 589–612. Zbl1080.32019
  35. 35. J.-C. Yoccoz, Birfurcations de points fixes elliptiques (d’après A. Chenciner), in Séminaire Bourbaki, Astérisque, 145–146 (1987), 313–334, Société Mathématiques de France, exposé 668. Zbl0616.58035
  36. 36. J.-C. Yoccoz, Travaux de Herman sur les tores invariants, in Séminaire Bourbaki, Astérisque, 206 (1992), 311–344, Société Mathématique de France, exposé 754. Zbl0791.58044MR1206072
  37. 37. E. Zehnder, Generalized implicit function theorems with applications to some small divisor problems I, Commun. Pure Appl. Math., 28 (1975), 91–140. Zbl0309.58006MR380867
  38. 38. E. Zehnder, Generalized implicit function theorems with applications to some small divisor problems II, Commun. Pure Appl. Math., 29 (1976), 49–111. Zbl0334.58009MR426055

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.