Tores invariants des systèmes dynamiques hamiltoniens

Jean-Benoît Bost

Séminaire Bourbaki (1984-1985)

  • Volume: 27, page 113-157
  • ISSN: 0303-1179

How to cite

top

Bost, Jean-Benoît. "Tores invariants des systèmes dynamiques hamiltoniens." Séminaire Bourbaki 27 (1984-1985): 113-157. <http://eudml.org/doc/110039>.

@article{Bost1984-1985,
author = {Bost, Jean-Benoît},
journal = {Séminaire Bourbaki},
keywords = {theory of Kolmogorov-Arnol'd-Moser; implicit function theorem},
language = {fre},
pages = {113-157},
publisher = {Société Mathématique de France},
title = {Tores invariants des systèmes dynamiques hamiltoniens},
url = {http://eudml.org/doc/110039},
volume = {27},
year = {1984-1985},
}

TY - JOUR
AU - Bost, Jean-Benoît
TI - Tores invariants des systèmes dynamiques hamiltoniens
JO - Séminaire Bourbaki
PY - 1984-1985
PB - Société Mathématique de France
VL - 27
SP - 113
EP - 157
LA - fre
KW - theory of Kolmogorov-Arnol'd-Moser; implicit function theorem
UR - http://eudml.org/doc/110039
ER -

References

top
  1. [1] R. Abraham and J.E. Marsden - Foundations of Mechanics, 2nd ed., Benjamin/ Cummings, Reading, Mass., 1978. Zbl0393.70001MR515141
  2. [2] V.I. Arnold - Méthodes mathématiques de la mécanique classique, MIR, Moscou, 1974. Zbl0385.70001MR474391
  3. [3] C.G.J. Jacobi - Vorlesungen über Dynamik, Gesammelte Werke, VIII (Supplementband), Berlin, 1884 - Chelsea, New York, 1969. 
  4. [4] H. Poincaré - Les méthodes nouvelles de la mécanique céleste, 3 vol., Gauthier-Villars, Paris, 1892-1899. JFM25.1847.03
  5. [5] E.T. Whittaker - A treatise on the analytical dynamics of particles and rigid bodies, 4th ed., Cambridge Univ. Press, Cambridge, 1959. Zbl0091.16406MR103613
  6. [6] G.D. Birkhoff - Dynamical systems, Colloq. Publ. IX, 2nd ed., Amer. Math. Soc., Providence, R.I, 1966. MR209095
  7. [7] V.V. Kozlov - Integrability and non-integrability in Hamiltonian mechanics, Russian Math. Surveys38:1(1983), 1-76. Zbl0525.70023MR693718
  8. [8] J. Moser - Various aspects of integrable Hamiltonian systems, Progress in Math.8, Birkhäuser, Boston (1980), 233-289. Zbl0468.58011MR589592
  9. [9] V.I. Arnold - Small denominators I. On the mapping of a circle into itself, Transl. Amer. Math. Soc. serie 2, 46(1965), 213-284. Zbl0152.41905
  10. [10] V.I. Arnold - Small denominators II. Proof of a theorem of A.N. Kolmogorov on the invariance of quasi-periodic motion under small perturbations of the Hamiltonian, Russian Math. Surveys18, n° 5(1963), 9-36. Zbl0129.16606MR163025
  11. [11] V.I. Arnold - Small denominators III. Small denominators and problems of stability of motion in classical and celestial mechanics, Russian Math. Surveys18, n° 6(1963), 85-193. Zbl0135.42701MR170705
  12. [12] V.I. Arnold - Chapitres supplémentaires de la théorie des équations différentielles ordinaires, MIR, Moscou, 1978. Zbl0455.34001MR361232
  13. [13] V.I. Arnold et A. Avez - Problèmes ergodiques de la mécanique classique, Gauthier-Villars, Paris, 1967. Zbl0149.21704MR209436
  14. [14] J. Bellisard, R. Lima and D. Testard - A metal-insulator transition for the almost Mathieu model, Comm. Math. Phys.88(1983), 207-234. Zbl0542.35059MR696805
  15. [15] A. Chenciner - La dynamique au voisinage d'un point fixe elliptique conservatif : de Poincaré et Birkhoff à Aubry et Mather, Séminaire Bourbaki1983-84, n° 622, Astérisque121-122(1985), 147-170. Zbl0582.58013MR768958
  16. [16] A. Chenciner - Bifurcations de points fixes elliptiques, preprint Université Paris7 (1984), à paraître aux Publ. Math. IHES. Zbl0566.58025
  17. [17] L. Chierchia and G. Gallavotti - Smooth prime integrals for quasi-integrable Hamiltonian systems, Il Nuovo Cimento67B(1982), 277-295. MR657905
  18. [18] Y. Colin de Verdière - Quasi-modes sur les variétés riemanniennes, Invent. Math.43(1977), 15-52. Zbl0449.53040MR501196
  19. [19] E.I. Dinaburg and Ya.G. Sinai - The one-dimensional Schrödinger equation with a quasi-periodic potential, Funct. Anal. Appl.9 (1976) , 279-289. Zbl0333.34014
  20. [20] R. Douady - Applications du théorème des tores invariants, Thèse de 3e cycle, Université Paris 7 (juin 1982). 
  21. [21] R. Douady - Une démonstration directe de l'équivalence des théorèmes de tores invariants pour difféomorphismes et champs de vecteurs, C.R. Acad. Sci. Paris295(1982), 201-204. Zbl0502.58013MR676353
  22. [22] R. Douady et P. Le Calvez - Exemple de point fixe elliptique non stable en dimension 4, C.R. Acad. Sci. Paris296 (1983) , 895-898. Zbl0535.58015MR715330
  23. [23] S.M. Graff - On the continuation of hyperbolic invariant tori for Hamiltonian systems, Jour. of Diff. Equ.15 (1974) , 1-69. Zbl0257.34048MR365626
  24. [24] M.R. Herman - Sur le groupe des difféomorphismes du tore, Ann. de l'Institut Fourier23(2) (1973), 75-86. Zbl0269.58004MR391166
  25. [25] M.R. Herman - Résultats récents sur la conjugaison différentiable, Proc. of the Internat. Congress of Mathematicians, Helsinki (1978), 811-820. Zbl0453.58001MR562693
  26. [26] M.R. Herman - Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Publ. Math. IHES49(1979), 5-234. Zbl0448.58019MR538680
  27. [27] M.R. Herman - Démonstration du théorème des courbes translatées par les difféomorphismes de l'anneau ; démonstration du théorème des tores invariants, manuscrit (1980). 
  28. [28] M.R. Herman - Une méthode pour minorer les exposants de Lyapounov, Preprint Centre de Math. de l'Ecole Polytechnique (1982). 
  29. [29] M.R. Herman - Sur les courbes invariantes par les difféomorphismes de l'anneau, Volume I : Astérisque103-104 (1983) ; Volume II : Preprint Centre de Math. de l'Ecole Polytechnique, à paraître chez Astérisque. Zbl0532.58011
  30. [30] M.R. Herman - Exemples de fractions rationnelles ayant une orbite dense sur la sphère de Riemann, Bull. Soc. Math. France112(1984), 93-142. Zbl0559.58020MR771920
  31. [31] M.R. Herman - Simple proof of local conjugacy theorems for diffeomorphisms of the circle with almost every rotation number, Preprint, MSRI, Berkeley (1984). MR819805
  32. [32] A.N. Kolmogorov - Sur la conservation des orbites quasi-périodiques lors d' une petite perturbation du hamiltonien, (en russe), Dokl. Akad. Nauk98 n° 4(1954), 527-530. Zbl0056.31502
  33. [33] A.N. Kolmogorov - Théorie générale des systèmes dynamiques et mécanique classique, (en russe), Proc. of the 1954 Intern. Congress, North Holland, Amsterdam, V1315-333. Traduction anglaise dans [1], 741-757. Zbl0095.17103MR97598
  34. [34] V.F. Lazutkin - The existence of caustics for a billiard problem in a convex domain, Math. USSR Izvestija7(1973), 185-214. Zbl0277.52002
  35. [35] B.B. Lieberman - Existence of quasiperiodic solutions in the Three-Body-Problem, Celestial Mechanics3(1971), 408-426. Zbl0222.70015MR311171
  36. [36] B.B. Lieberman - Quasiperiodic solutions of Hamiltonian systems, Jour. of Diff. Equ.11(1972), 109-137. Zbl0213.36506MR289865
  37. [37] L. Markus and K.R. Meyer - Generic Hamiltonian systems are neither integrable nor ergodic, Memoirs of the Amer. Math. Soc.144 (1974) . Zbl0291.58009MR451301
  38. [38] J. Martinet - Normalisation des champs de vecteurs holomorphes (d'après A.D. Brjuno), Séminaire Bourbaki1980-81, n° 564, Springer-Verlag, Lect. Notes in Math.901(1981), 55-70. Zbl0481.34013MR647488
  39. [39] J. Moser - On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen, Math. Phys. Kl. (1962), 1-20. Zbl0107.29301MR147741
  40. [40] J. Moser - A rapidly convergent iteration method and nonlinear partial differential equations, Ann. Scuola Norm. Sup. Pisa20(1966), I : 265-315, II : 499-535. Zbl0144.18202
  41. [41] J. Moser - Convergent series expansions for quasi-periodic motions, Math. Ann.169(1967), 136-176. Zbl0149.29903MR208078
  42. [42] J. Moser - Lectures on Hamiltonian systems, Memoirs Amer. Math. Soc.81(1968), 1-60. Zbl0172.11401MR230498
  43. [43] J. Moser - On the construction of almost periodic solutions for ordinary differential equations, Proc. of the Internat. Conf. on Functional Analysis and Pelated Topics, Tokyo (1969), 60-67. Zbl0201.41701MR265692
  44. [44] J. Moser - Stable and random motions in dynamical systems, Ann. Math. Studies n° 77, Princeton Univ. Press, Princeton N.J., 1973. Zbl0271.70009MR442980
  45. [45] J. Moser - Is the solar system stable ?, Math. Intelligenoer1(1978), 65-71. MR495314
  46. [46] J. Moser and J. Pöschel - An extension of a result by Dinaburg and Sinai on quasiperiodic potential, Comment. Math. Helvetici59 (1984) , 39-85. Zbl0533.34023MR743943
  47. [47] J. Pöschel - Über invariante Tori in differenzierbaren Hamiltonschen Systemen, Bonner Mathematische Schriften120(1980). Zbl0466.70021MR595866
  48. [48] J. Pöschel - Integrability of Hamiltonian systems on Cantor sets, Comm. Pure Appl. Math.35(1982), 653-695. Zbl0542.58015MR668410
  49. [49] R.C. Robinson - Generic properties of conservative systems, Amer. J. of Math.92(1970), I : 562-603, II : 897-906. Zbl0212.56601MR273640
  50. [50] H. Rüssmann - Kleine Nenner I : Über invarianten Kurven differenzierbarer Abbildungen eines Kreisringes, Nachr. Akad. Wiss. Göttingen, Math. Phys. K1. (1970), 67-105. Zbl0201.11202MR273156
  51. [51] H. Rüssmann - Kleine Nenner II : Bemerkungen zur Newtonschen Methode, Nachr. Akad. Wiss. Göttingen, Math. Phys. K1. (1972), 1-10. Zbl0255.30003MR309297
  52. [52] H. Rüssmann - On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients on the torus, Lect. Notes in Physics38(1975), 598-624. Zbl0319.35017MR467824
  53. [53] H. Rüssmann - Note on sums containing small divisors, Comm. Pure Appl. Math.29(1976), 755-758. Zbl0336.35020MR426054
  54. [54] H. Rüssmann - On the one-dimensional Schrödinger equation with a quasi-periodic potential, Ann. New York Acad. Sci.357(1980), 90-107. Zbl0477.34007MR612810
  55. [55] H. Rüssmann - On the existence of invariant curves of twist mappings of an annulus, Lect. Notes in Math.1007(1983), 677-712. Zbl0531.58041MR730294
  56. [56] C.L. Siegel - Iteration of analytic functions, Ann. of Math.43 (1942) , 607- 612. Zbl0061.14904MR7044
  57. [57] C.L. Siegel - Über die analytische Normalform analytischer Differentialgleichungen in der Nähe einer Gleichgewichtslösung, Nachr. Akad. Wiss. Göttingen, Math. Phys. Kl. (1952), 21-30. Zbl0047.32901MR57407
  58. [58] C.L. Siegel and J.K. Moser - Lectures on Celestial Mechanics, Springer, Grundlehren Bd. 187(1971). Zbl0312.70017MR502448
  59. [59] B. Simon - Almost periodic Schrödinger operator : a review, Adv. Appl. Math.3(1982), 463-490. Zbl0545.34023MR682631
  60. [60] N.V. Svanidze - Small perturbations of an integrable dynamical system with an integral invariant, Proc. Steklov Inst. of Math. n° 2(1981) , 127-151. Zbl0463.58016MR573904
  61. [61] W. Thurston - Foliations and groups of diffeomorphisms, Bull. Amer. Math. Soc.80(1974), 304-307. Zbl0295.57014MR339267
  62. [62] J.C. Yoccoz - Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne, Ann. Sci. E.N.S.4e s., 17(1984), 333-359. Zbl0595.57027MR777374
  63. [63] E. Zehnder - Generalized implicit function theorems with applications to some small divisor problems, Comm. Pure Appl. Math., I : 28(1975), 91-140, II: 29(1976), 49-113. Zbl0309.58006MR380867
  64. [64] M.L. Gromov - Smoothing and inversion of differential operators, Math. USSR Sbornik17(1972), 381-434. Zbl0254.47087MR310924
  65. [65] R.S. Hamilton - The inverse function theorem of Nash and Moser, Preprint, Cornell University, 1974. MR656198
  66. [66] R.S. Hamilton - The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc.7(1982), 65-222. Zbl0499.58003MR656198
  67. [67] L. Hörmander - The boundary problem of physical geodesy, Arch. Rat. Mach. Anal.62(1976), 1-52. Zbl0331.35020MR602181
  68. [68] L. Hörmander - Implicit function theorems, Lectures at Stanford University, Summer Quarter 1977. 
  69. [69] L. Hörmander - On the Nash-Moser implicit function theorem, Preprint. MR802486
  70. [70] S. Lojasiewicz and E. Zehnder - An inverse function theorem in Fréchet spaces, Jour. of Funct. Anal.33(1979), 165-174. Zbl0431.46032MR546504
  71. [71] J. Moser - A new technique for the construction of solutions of non-linear differential equations, Proc. Nat. Acad. Sci. USA47(1961), 1824-1831. Zbl0104.30503MR132859
  72. [72] J. Nash - The embedding problem for Riemannian manifolds, Ann. of Math.63 (1956), 20-63. Zbl0070.38603MR75639
  73. [73] F. Sergeraert - Un théorème de fonctions implicites sur certains espaces de Fréchet et quelques applications, Ann. Sci. E.N.S.4e s., 5(1972), 599-660. Zbl0246.58006MR418140
  74. [74] E. Zehnder - Moser's implicit function theorem in the framework of analytic smoothing, Math. Annalen219(1976), 105-121. Zbl0297.58003MR388440

Citations in EuDML Documents

top
  1. Raphaël Douady, Stabilité ou instabilité des points fixes elliptiques
  2. Ricardo Pérez-Marco, KAM techniques in PDE
  3. Marie-Claude Arnaud, Création de points périodiques de tous types au voisinage des tores K.A.M.
  4. Abed Bounemoura, Laurent Niederman, Generic Nekhoroshev theory without small divisors
  5. Jean-Christophe Yoccoz, Bifurcations de points fixes elliptiques
  6. Stefano Marmi, Chaotic behaviour in the solar system
  7. Ludovic Rifford, Regularity of weak KAM solutions and Mañé’s Conjecture
  8. Leonardo Mora, Neptalí Romero, Persistence of homoclinic tangencies for area-preserving maps
  9. Bassam Fayad, Raphaël Krikorian, Herman’s last geometric theorem
  10. Jérôme E. Los, Dédoublement de courbes invariantes sur le cylindre : petits diviseurs

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.