Fibrés stables et métriques d'Hermite-Einstein

Christophe Margerin

Séminaire Bourbaki (1986-1987)

  • Volume: 29, page 263-283
  • ISSN: 0303-1179

How to cite

top

Margerin, Christophe. "Fibrés stables et métriques d'Hermite-Einstein." Séminaire Bourbaki 29 (1986-1987): 263-283. <http://eudml.org/doc/110083>.

@article{Margerin1986-1987,
author = {Margerin, Christophe},
journal = {Séminaire Bourbaki},
keywords = {stable bundles; Yang-Mills theory; Kähler manifold; holomorphic vector bundle; Hermitian-Einstein connection},
language = {fre},
pages = {263-283},
publisher = {Société Mathématique de France},
title = {Fibrés stables et métriques d'Hermite-Einstein},
url = {http://eudml.org/doc/110083},
volume = {29},
year = {1986-1987},
}

TY - JOUR
AU - Margerin, Christophe
TI - Fibrés stables et métriques d'Hermite-Einstein
JO - Séminaire Bourbaki
PY - 1986-1987
PB - Société Mathématique de France
VL - 29
SP - 263
EP - 283
LA - fre
KW - stable bundles; Yang-Mills theory; Kähler manifold; holomorphic vector bundle; Hermitian-Einstein connection
UR - http://eudml.org/doc/110083
ER -

References

top
  1. [A-B] M.F. Atiyah- R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser.A308 (1982), 524-615. Zbl0509.14014MR702806
  2. [Bi] E. Bishop, Conditions for the analyticity of certain sets, Michigan Math.J. (1964), 289-304. Zbl0143.30302MR168801
  3. [Bo] F. Bogomolov, Holomorphic tensors and vector bundles, Izvestia USSR42 (1978),1227-1287. Zbl0439.14002MR522939
  4. [D1] S.K. Donaldson, A new proof of a theorem of Narasimhan and Seshadri, J. Differential Geom., 18 (1983), 269-277. Zbl0504.49027MR710055
  5. [D2] S.K. Donaldson, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundlesProc. London Math. Soc. (3) 50 (1985), 1-26. Zbl0529.53018MR765366
  6. [D3] S.K. Donaldson, Inimité determinants - Stable bundles and curvature, Preprint (Oxford-England). 
  7. [G-T] D. Gilbarg et N.S. Trudinger, Elliptic Partial Differential equations of second order, Springer1977. Zbl0361.35003MR473443
  8. [Ham] R.S. Hamilton, Harmonic Maps of manifolds with boundary, Lecture Notes in Mathematics471 (Springer1975). Zbl0308.35003MR482822
  9. [Hi] N.J. Hitchin, The self duality equations on a Riemann surface, à paraître in Proc. London Math. Soc. Zbl0634.53045
  10. [Ko] S. Kobayashi, Curvature and stability of vector bundles, Proc. Japan Acad. Ser. A. Math. Sci.58 (1982), 158-162. Zbl0546.53041MR664562
  11. [Lü1] M. Lubke, Chernklassen von Hermite-Einstein-Vektorbündeln, Math. Ann.260 (1982), 133-141. Zbl0471.53043MR664372
  12. [Lü2] M. Lubke, Stability of Einstein-Hermitian Vector bundles, Manuscripta Math.42 (1983), 245-257. Zbl0558.53037MR701206
  13. [M-R1] R.B. Mehta, A. Ramanathan, Semi-stable sheaves on projective varieties and their restriction to curves, Math. Ann.258 (1982), 213-224. Zbl0473.14001
  14. [M-R2] R.B. Mehta, A. Ramanathan, Restriction of stable sheaves and representations of the fundamental group, Invent. Math.77, 163-172 (1984). Zbl0525.55012MR751136
  15. [N-S] M.S. Narasimhan, C.S. Seshadri, Stable and unitary vector bundles on compact Riemann surfaces, Ann. of Math.82 (1965), 540-567. Zbl0171.04803MR184252
  16. [O-S-S] C. Okonek, M. Schneider, H. Spindler, Vector bundles on complex projective spaces, Birkhäuser (1980). Zbl0438.32016MR561910
  17. [ s.g.a] F. Campana, le théorème sur les limites d'ensembles analytiques de E. Bishop, le Séminaire de Géométrie Analytique, Publication de l'Institut Elie Cartan n°5, Janvier 1982. MR725695
  18. [ s.g.a] C. Sabbah, Application du théorème de Bishop à l'espace des cycles, Séminaire de Géométrie Analytique, Publication de l'Institut Elie Cartan n°5, Janvier 1982. 
  19. [U] K.K. Uhlenbeck, Connections with Lp bounds on curvature, Comm. Math. Phys.83 (1982), 31-42. Zbl0499.58019MR648356
  20. [U-Y] K.K. Uhlenbeck et S.T. Yau, On the existence of Hermitian-Yang-Mills connections in stable Vector Bundles, Preprint, (à paraître dans Communication Pure and Applied Math). Zbl0615.58045MR861491

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.