Métriques d'Einstein-Kähler sur les variétés de Fano : obstructions et existence

Jean-Pierre Bourguignon

Séminaire Bourbaki (1996-1997)

  • Volume: 39, page 277-305
  • ISSN: 0303-1179

How to cite

top

Bourguignon, Jean-Pierre. "Métriques d'Einstein-Kähler sur les variétés de Fano : obstructions et existence." Séminaire Bourbaki 39 (1996-1997): 277-305. <http://eudml.org/doc/110232>.

@article{Bourguignon1996-1997,
author = {Bourguignon, Jean-Pierre},
journal = {Séminaire Bourbaki},
keywords = {Kähler-Einstein metrics; Fano manifolds; first Chern class; stable bundles; Futaki invariant},
language = {fre},
pages = {277-305},
publisher = {Société Mathématique de France},
title = {Métriques d'Einstein-Kähler sur les variétés de Fano : obstructions et existence},
url = {http://eudml.org/doc/110232},
volume = {39},
year = {1996-1997},
}

TY - JOUR
AU - Bourguignon, Jean-Pierre
TI - Métriques d'Einstein-Kähler sur les variétés de Fano : obstructions et existence
JO - Séminaire Bourbaki
PY - 1996-1997
PB - Société Mathématique de France
VL - 39
SP - 277
EP - 305
LA - fre
KW - Kähler-Einstein metrics; Fano manifolds; first Chern class; stable bundles; Futaki invariant
UR - http://eudml.org/doc/110232
ER -

References

top
  1. [1] Atiyah, M.F., Bott, R., The Yang-Mills Equations over Riemann Surfaces, Phil. Trans. R. Soc. London A308 (1983), 523-615. Zbl0509.14014MR702806
  2. [2] Aubin, T., Équations du type de Monge-Ampère sur les variétés kählériennes compactes, C.R. Acad. Sci. Paris283 (1976), 119-121. Zbl0333.53040MR433520
  3. [3] Aubin, T., Réduction du cas positif de l'équation de Monge-Ampère sur les variétés kählériennes compactes à la démonstration d'une inégalité, J. Functional Anal.57 (1984), 143-153. Zbl0538.53063MR749521
  4. [4] Bahri, A., Coron, J.-M., The Scalar Curvature Problem on the Standard 3-Dimensional Sphere, J. Functional Anal.95 (1991), 106-172. Zbl0722.53032MR1087949
  5. [5] Bando, S., The K-Energy Map, Almost Einstein-Kähler Metrics and an Inequality of the Miyaoka-Yau Type, Tôhoku Math. J.39 (1987), 231-235. Zbl0678.53061MR887939
  6. [6] Bando, S., Mabuchi, T., Uniqueness of Kähler-Einstein Metrics Modulo Connected Group Actions, in Algebraic Geometry, Sendai1985, Adv. Studies in Pure Math.10, Kinokuniya, Tokyo, 1987, 11-40. Zbl0641.53065MR946233
  7. [7] Bando, S., Mabuchi, T., On some Integral Invariants on Compact Complex Manifolds, Proc. Japan Acad. Sci.62 (1986), 197-200. Zbl0592.32022MR854218
  8. [8] Berger, M., Sur les variétés d'Einstein compactes, C.R. IIIème Réunion Math.Expression Latine, Namur (1965), 35-55. Zbl0178.56001MR238226
  9. [9] Besse, A.L., Einstein Manifolds, Ergeb. Math.10, Springer-Verlag, Berlin- Heidelberg, 1987. Zbl0613.53001MR867684
  10. [10] Bott, R., A Residue Formula for Holomorphic Vector Fields, J. Differential Geom.1 (1967), 311-330. Zbl0179.28801MR232405
  11. [11] Bourguignon, J.P., Premières formes de Chern des variétés kählériennes compactes, in Séminaire Bourbaki1977-78, Exposé n°507, Lect. Notes in Math.710, Springer-Verlag, Berlin-Heidelberg, 1978, 1-21. Zbl0413.53035MR554212
  12. [12] Bourguignon, J.P., Ricci Curvature and Einstein Metrics, in Differentiel Geometry and Global Analysis, Berlin1979, U. Simon and D. Ferus Ed., Lect. Notes in Math.838, Springer, Berlin-Heidelberg-New York, 1981, 42-63. Zbl0437.53029MR636265
  13. [13] Bourguignon, J.P., Invariants intégraux fonctionnels pour des équations aux dérivées partielles d'origine géométrique, in Differential Geometry, Peñiscola, A.M. Naveira Ed., Lect. Notes in Math.1209, Springer-Verlag, Berlin-Heidelberg, 1987, 100-108. Zbl0623.53003MR863748
  14. [14] Bourguignon, J.P., L'équation de la chaleur associée à la courbure de Ricci, in Séminaire Bourbaki1985-86, Exposé n°653, Astérisque145-146 (1987), 45-61. Zbl0613.53018MR880025
  15. [15] Burns, D., De Bartolomeis, P., Stability of Vector Bundles and Extremal Metrics, Inventiones Math.92 (1988), 403-407. Zbl0645.53037MR936089
  16. [16] Calabi, E., The Space of Kähler Metrics, in Proc. International Congress of Mathematicians, Amsterdam, II (1954), 206-207. 
  17. [17] Calabi, E., Improper Affine Hyperspheres and a Generalization of a Theorem of K. Jörgens, Michigan Math. J.5 (1958), 105-126. Zbl0113.30104MR106487
  18. [18] Cao, H.D., Deformation of Kähler metrics to Kähler-Einstein metrics on Compact Kähler Manifolds, Inventiones Math.81 (1985), 359-372. Zbl0574.53042MR799272
  19. [19] Catanese, F., Lebrun, C., On the Scalar Curvature of Einstein Manifolds, Prépublication, Universität Göttingen. 
  20. [20] Chang, S.Y.A., Yang, P.C., Prescribing Gaussian Curvature on S2, Acta Math.159 (1987), 215-259. Zbl0636.53053MR908146
  21. [21] Chrusciel, P., Semi-Global Existence and Convergence of Solutions of the Robinson-Trautman (2-dimensional Calabi) Equation, Commun. Math. Phys.137 (1991), 289-313. Zbl0729.53071MR1101689
  22. [22] Debarre, O., Variétés de Fano, in Séminaire Bourbaki1996-97, Exposé n° 827, 1-25. MR1627112
  23. [23] Demailly, J.-P., Kollár, J., Semi-continuity of Complex Singularity Exponents and Kähler-Einstein Metrics on Fano Orbifolds, Prépublication Institut Fourier, Grenoble, à paraître. Zbl0994.32021
  24. [24] Demazure, M., Surfaces de Del Pezzo, in Séminaire sur les singularités des surfaces1976-1977, Palaiseau, Lect. Notes in Math.777, Springer-Verlag, Berlin- Heidelberg-New York, 1980, 23-69. Zbl0444.14024
  25. [25] Ding, W., Remarks on the Existence Problem of Positive Kähler-Einstein Met- rics, Math. Ann.282 (1988), 463-471. Zbl0661.53045MR967024
  26. [26] Ding, W., Tian, G., Kähler-Einstein Metrics and the Generalized Futaki In- variant, Inventiones Math.110 (1992), 315-335. Zbl0779.53044MR1185586
  27. [27] Ding, W., Tian, G., The Generalized Moser-Trudinger Inequality, in Proc. Int. Conf. on Non-Linear Analysis, Tianjin, K.C. Chang et al. Ed., World Scientific, Singapore, 1992, 57-70. Zbl1049.53507
  28. [28] Donaldson, S.K., Anti-Self-Dual Yang-Mills Connections over Complex Algebraic Surfaces and Stable Vector Bundles, Proc. London Math. Soc.50 (1985), 1-26. Zbl0529.53018MR765366
  29. [29] Donaldson, S.K., Infinite Determinants, Stable Bundles and Curvature, Duke Math. J.54 (1987), 231-247. Zbl0627.53052MR885784
  30. [30] Donaldson, S.K., Remarks on Gauge Theory, Complex Geometry and 4-Manifold Topology, The Fields Medal Volume, M.F. Atiyah and D. Iagolnitzer Ed., World Scientific, 1997. MR1622931
  31. [31] Donaldson, S.K., Symmetric Spaces, Kähler Geometry and Hamiltonian Dynamics, Preprint, Oxford Univ., Oxford, 1997. Zbl0972.53025MR1736211
  32. [32] Futaki, A., On Compact Kähler Manifolds of Constant Scalar Curvatures, Proc. Japan Acad. Sci.59 (1983), 401-402. Zbl0539.53048MR726535
  33. [33] Futaki, A., An Obstruction to the Existence of Kähler-Einstein Metrics, Inventiones Math.73 (1983), 437-443. Zbl0506.53030MR718940
  34. [34] Futaki, A., The Ricci Curvature of Symplectic Quotients of Fano Manifolds, Tôhoku Math. J.39 (1987), 329-339. Zbl0629.53057MR902573
  35. [35] Futaki, A., Kähler-Einstein Metrics and Integral Invariants, Lect. Notes in Math.1314, Springer, Berlin-Heidelberg-New York, 1988. Zbl0646.53045MR947341
  36. [36] Futaki, A., Mabuchi, T., An Obstruction Class and a Representation of Holomorphic Automorphisms, in Geometry and Analysis on Manifolds, Lect. Notes in Math.1339, Springer, Berlin-Heidelberg-New York-Tokyo, (1988), 127-141. Zbl0646.32015MR961478
  37. [37] Futaki, A., Mabuchi, T., Sakane, Y., Einstein-Kähler Metrics with Positive Ricci Curvature, in Kähler Metrics and Moduli Spaces, Adv. Stud. Pure Math.18 (1990), 11-83. Zbl0755.32028MR1145246
  38. [38] Kazdan, J.L., Warner, F.W., Curvature Functions for Compact 2-manifolds, Ann. Math.99 (1974), 14-47. Zbl0273.53034MR343205
  39. [39] Kobayashi, S., On Compact Kähler Manifolds with Positive Definite Ricci Tensor, Ann. Math.74 (1961), 570-574. Zbl0107.16002MR133086
  40. [40] Kobayashi, S., Curvature and Stability of Vector Bundles, Proc. Japan Acad. Sci.58 (1982), 158-162. Zbl0546.53041MR664562
  41. [41] Kobayashi, S., Differential Geometry of Complex Vector Bundles, Publ. Math. Soc. Japan15, Princeton Univ. Press, Princeton, and Iwanami Shoten, Tokyo, 1987. Zbl0708.53002MR909698
  42. [42] Kohn, J.J., Subellipticity of the ∂-Neumann Problem on Pseudo-Convex Domains: Sufficient Conditions, Acta Math.142 (1979), 79-122. Zbl0395.35069
  43. [43] Koiso, N., Sakane, Y., Non-Homogeneous Kähler-Einstein Metrics on Compact Complex Manifolds, in Curvature and Topology of Riemannian Manifolds, Lect. Notes in Math.1201, Springer, Berlin-Heidelberg-New York-Tokyo, 1986, 165-179. Zbl0591.53056MR859583
  44. [44] Lebrun, C., Polarized 4-Manifolds, Extremal Kähler Metrics and Seiberg-Wit- ten Theory, Math. Res. Lett.2 (1995), 653-662. Zbl0874.53051MR1359969
  45. [45] Lebrun, C., Simanca, S., Extremal Kähler Metrics and Complex Deformation Theory, Geom. Funct. Anal.4 (1994), 298-336. Zbl0801.53050MR1274118
  46. [46] Lichnerowicz, A., Sur les transformations analytiques des variétés kählériennes, C.R. Acad. Sci. Paris244 (1957), 3011-3014. Zbl0080.37501MR94479
  47. [47] Lübke, M., Stability of Einstein-Kähler Vector Bundles, Manuscripta Math.42 (1983), 245-257. Zbl0558.53037MR701206
  48. [48] Mabuchi, T., Some Symplectic Geometry on Compact Kähler Manifolds, Osaka Math. J.24 (1987), 227-252. Zbl0645.53038MR909015
  49. [49] Mabuchi, T., Einstein-Kähler Forms, Futaki Invariants and Convex Geometry on Toric Fano Manifolds, Osaka Math. J.24 (1987), 705-737. Zbl0661.53032MR927057
  50. [50] Margerin, C., Fibrés stables et métriques d'Hermite-Einstein, in Séminaire Bourbaki1986-87, Exposé n°683, Astérisque152-153 (1987), 263-283. Zbl0637.53080MR936859
  51. [51] Matsushima, Y., Sur les espaces homogènes kählériens d'un groupe réductif, Nagoya Math. J.11 (1957), 53-60. Zbl0099.37501MR87177
  52. [52] Matsushima, Y., Sur la structure du groupe d'homéomorphismes analytiques d'une certaine variété kählérienne, Nagoya Math. J.11 (1957), 145-150. Zbl0091.34803MR94478
  53. [53] Matsushima, Y., Remarks on Kähler-Einstein Manifolds, Nagoya Math. J.46 (1972), 161-173. Zbl0249.53050MR303478
  54. [54] Moser, J., A Sharp Form of an Inequality by N. Trudinger, Indiana Math. J.20 (1971), 1077-1091. Zbl0213.13001MR301504
  55. [55] Mumford, D., Stability of Projective Varieties, Enseignement Math.23 (1977), fasc. 1-2, 39-110. Zbl0363.14003MR450272
  56. [56] Nadel, A.M., Multiplier Ideal Sheaves and Existence of Kähler-Einstein Metrics of Positive Scalar Curvature, Proc. Nat. Acad. Sci. U.S.A.86 (1989), 7299- 7300. Zbl0711.53056MR1015491
  57. [57] Nadel, A.M., Multiplier Ideal Sheaves and Kähler-Einstein Metrics of Positive Scalar Curvature, Ann. Math.132 (1990), 549-596. Zbl0731.53063MR1078269
  58. [58] Nadel, A.M., Multiplier Ideal Sheaves and Futaki's Invariant, Preprint, Univ. Southern California, Los Angeles, 1997. MR1702085
  59. [59] Nakagawa, Y., Einstein-Kähler toric Fano fourfolds, Tôhoku Math. J.45 (1993), 297-310. Zbl0778.53040MR1215931
  60. [60] Nakagawa, Y., Combinatorial Formulae for Futaki Characters and Generalized Killing Forms on Toric Fano Manifolds, Prépublication, Tôhoku Univ., Sendai. Zbl1015.53045
  61. [61] Onofri, E., On the Positivity of the Effective Action in a Theory of Random Surfaces, Commun. Math. Phys.86 (1982), 321-326. Zbl0506.47031MR677001
  62. [62] Sakane, Y., Examples of Compact Kähler-Einstein Manifolds with Positive Ricci Curvature, Osaka J. Math.31 (1986), 585-617. Zbl0636.53068MR866267
  63. [63] Semmes, S., Complex Monge-Ampère Equations and Symplectic Manifolds, Amer. J. Math.114 (1992), 495-550. Zbl0790.32017MR1165352
  64. [64] Première classe de Chern et courbure de Ricci : preuve de la conjecture de Calabi, Séminaire Palaiseau, Astérisque58 (1978). Zbl0397.35028MR525893
  65. [65] Siu, Y.T., Lectures on Hermite-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics, Deutscher Math. Ver. Seminar8, Birkhäuser, Basel, 1987. Zbl0631.53004MR904673
  66. [66] Siu, Y.T., Kähler-Einstein Metrics for the Case of Positive First Chern Class, in Complex Analysis III, C.A. Berenstein Ed., Lect. Notes in Math.1277, Springer-Verlag, Berlin-Heidelberg-New York, (1987), 120-130. Zbl0623.53029MR922336
  67. [67] Siu, Y.T., The Existence of Kähler-Einstein Metrics on Manifolds with Positive Anticanonical Line Bundle and a Suitable Finite Symmetry Group, Ann. Math.127 (1988), 585-627. Zbl0651.53035MR942521
  68. [68] Skoda, H., Sous-ensembles analytiques d'ordre fini dans Cn, Bull. Soc. Math. France100 (1972), 353-408. Zbl0246.32009MR352517
  69. [69] Subramanian, S., Stability of the Tangent Bundle and Existence of a Kähler-Einstein Metric, Math. Ann.291 (1991), 573-577. Zbl0766.14009MR1135531
  70. [70] Tian, G., On Kähler-Einstein Metrics on Certain Manifolds with c1(M) &gt; 0, Inventiones Math.89 (1987), 225-246. Zbl0599.53046MR894378
  71. [71] Tian, G., On Calabi's Conjecture for Complex Surfaces with Positive First Chern Class, Inventiones Math.101 (1990), 101-172. Zbl0716.32019MR1055713
  72. [72] Tian, G., A Harnack Inequality for some Complex Monge-Ampère Equations, J. Differential Geom.29 (1989), 481-488. Zbl0681.53035MR992327
  73. [73] Tian, G., On Stability of the Tangent Bundles of Fano Varieties, Intern. J. Math.3 (1992), 401-413. Zbl0779.53009MR1163733
  74. [74] Tian, G., Kähler-Einstein Metrics on Algebraic Manifolds, in C.I.M.E. Conf. Transcendental Methods in Algebraic Geom., F. Catanese, C. Ciliberto Ed., 1994. Zbl0896.32003
  75. [75] Tian, G., The K-Energy on Hypersurfaces and Stability, Commun. Geom. Anal.2 (1994), 239-265. Zbl0846.32019MR1312688
  76. [76] Tian, G., Kähler-Einstein Metrics with Positive Scalar Curvature, Inventiones Math., à paraître. Zbl0892.53027
  77. [77] Tian, G., Yau, S.T., Kähler-Einstein Metrics on Complex Surfaces with c1 (M) positive, Commun. Math. Phys.112 (1987), 175-203. Zbl0631.53052MR904143
  78. [78] Tian, G., Zhu, X., A Non-Linear Inequality of Moser-Trudinger Type, Preprint Mass. Inst. Technology, Cambridge. Zbl0987.32017
  79. [79] Trudinger, N., On Imbeddings into Orlicz Spaces and some Applications, J. Math. Phys.17 (1967), 473-483. Zbl0163.36402MR216286
  80. [80] Uhlenbeck, K.K., Yau, S.T., On the Existence of Hermite-Yang-Mills Connections in Stable Vector Bundles, Commun. Pure Appl. Math.39 (1986), 257-293. Zbl0615.58045MR861491
  81. [81] Yau, S.T., On the Curvature of Compact Hermitian Manifolds, Inventiones Math.25 (1974), 213-239. Zbl0299.53039MR382706
  82. [82] Yau, S.T., On Calabi's Conjecture and some New Results in Algebraic Geometry, Proc. Nat. Acad. Sci. U.S.A.74 (1977), 1798-1799. Zbl0355.32028MR451180
  83. [83] Yau, S.T., On the Ricci-Curvature of a Complex Kähler Manifold and the Complex Monge-Ampère Equation, I, Commun. Pure Appl. Math.31 (1978), 339- 411. Zbl0369.53059MR480350
  84. [84] Yau, S.T., Non-Linear Analysis in Geometry, Enseignement Math.33 (1986), 1-54. Zbl0631.53003
  85. [85] Yau, S.T., Open Problems in Geometry, in Differential Geometry, Part I : Partial Differential Equations on Manifolds, Proc. Symp. Pure Math.54, (1993), 1-28. Zbl0801.53001MR1216573
  86. [86] Yotov, M., Nadel's Subschemes of Fano Manifolds with a Picard Group Isomorphic to Z, Preprint, Humboldt Univ., 1996. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.