Métriques d'Einstein-Kähler sur les variétés de Fano : obstructions et existence
Séminaire Bourbaki (1996-1997)
- Volume: 39, page 277-305
- ISSN: 0303-1179
Access Full Article
topHow to cite
topBourguignon, Jean-Pierre. "Métriques d'Einstein-Kähler sur les variétés de Fano : obstructions et existence." Séminaire Bourbaki 39 (1996-1997): 277-305. <http://eudml.org/doc/110232>.
@article{Bourguignon1996-1997,
author = {Bourguignon, Jean-Pierre},
journal = {Séminaire Bourbaki},
keywords = {Kähler-Einstein metrics; Fano manifolds; first Chern class; stable bundles; Futaki invariant},
language = {fre},
pages = {277-305},
publisher = {Société Mathématique de France},
title = {Métriques d'Einstein-Kähler sur les variétés de Fano : obstructions et existence},
url = {http://eudml.org/doc/110232},
volume = {39},
year = {1996-1997},
}
TY - JOUR
AU - Bourguignon, Jean-Pierre
TI - Métriques d'Einstein-Kähler sur les variétés de Fano : obstructions et existence
JO - Séminaire Bourbaki
PY - 1996-1997
PB - Société Mathématique de France
VL - 39
SP - 277
EP - 305
LA - fre
KW - Kähler-Einstein metrics; Fano manifolds; first Chern class; stable bundles; Futaki invariant
UR - http://eudml.org/doc/110232
ER -
References
top- [1] Atiyah, M.F., Bott, R., The Yang-Mills Equations over Riemann Surfaces, Phil. Trans. R. Soc. London A308 (1983), 523-615. Zbl0509.14014MR702806
- [2] Aubin, T., Équations du type de Monge-Ampère sur les variétés kählériennes compactes, C.R. Acad. Sci. Paris283 (1976), 119-121. Zbl0333.53040MR433520
- [3] Aubin, T., Réduction du cas positif de l'équation de Monge-Ampère sur les variétés kählériennes compactes à la démonstration d'une inégalité, J. Functional Anal.57 (1984), 143-153. Zbl0538.53063MR749521
- [4] Bahri, A., Coron, J.-M., The Scalar Curvature Problem on the Standard 3-Dimensional Sphere, J. Functional Anal.95 (1991), 106-172. Zbl0722.53032MR1087949
- [5] Bando, S., The K-Energy Map, Almost Einstein-Kähler Metrics and an Inequality of the Miyaoka-Yau Type, Tôhoku Math. J.39 (1987), 231-235. Zbl0678.53061MR887939
- [6] Bando, S., Mabuchi, T., Uniqueness of Kähler-Einstein Metrics Modulo Connected Group Actions, in Algebraic Geometry, Sendai1985, Adv. Studies in Pure Math.10, Kinokuniya, Tokyo, 1987, 11-40. Zbl0641.53065MR946233
- [7] Bando, S., Mabuchi, T., On some Integral Invariants on Compact Complex Manifolds, Proc. Japan Acad. Sci.62 (1986), 197-200. Zbl0592.32022MR854218
- [8] Berger, M., Sur les variétés d'Einstein compactes, C.R. IIIème Réunion Math.Expression Latine, Namur (1965), 35-55. Zbl0178.56001MR238226
- [9] Besse, A.L., Einstein Manifolds, Ergeb. Math.10, Springer-Verlag, Berlin- Heidelberg, 1987. Zbl0613.53001MR867684
- [10] Bott, R., A Residue Formula for Holomorphic Vector Fields, J. Differential Geom.1 (1967), 311-330. Zbl0179.28801MR232405
- [11] Bourguignon, J.P., Premières formes de Chern des variétés kählériennes compactes, in Séminaire Bourbaki1977-78, Exposé n°507, Lect. Notes in Math.710, Springer-Verlag, Berlin-Heidelberg, 1978, 1-21. Zbl0413.53035MR554212
- [12] Bourguignon, J.P., Ricci Curvature and Einstein Metrics, in Differentiel Geometry and Global Analysis, Berlin1979, U. Simon and D. Ferus Ed., Lect. Notes in Math.838, Springer, Berlin-Heidelberg-New York, 1981, 42-63. Zbl0437.53029MR636265
- [13] Bourguignon, J.P., Invariants intégraux fonctionnels pour des équations aux dérivées partielles d'origine géométrique, in Differential Geometry, Peñiscola, A.M. Naveira Ed., Lect. Notes in Math.1209, Springer-Verlag, Berlin-Heidelberg, 1987, 100-108. Zbl0623.53003MR863748
- [14] Bourguignon, J.P., L'équation de la chaleur associée à la courbure de Ricci, in Séminaire Bourbaki1985-86, Exposé n°653, Astérisque145-146 (1987), 45-61. Zbl0613.53018MR880025
- [15] Burns, D., De Bartolomeis, P., Stability of Vector Bundles and Extremal Metrics, Inventiones Math.92 (1988), 403-407. Zbl0645.53037MR936089
- [16] Calabi, E., The Space of Kähler Metrics, in Proc. International Congress of Mathematicians, Amsterdam, II (1954), 206-207.
- [17] Calabi, E., Improper Affine Hyperspheres and a Generalization of a Theorem of K. Jörgens, Michigan Math. J.5 (1958), 105-126. Zbl0113.30104MR106487
- [18] Cao, H.D., Deformation of Kähler metrics to Kähler-Einstein metrics on Compact Kähler Manifolds, Inventiones Math.81 (1985), 359-372. Zbl0574.53042MR799272
- [19] Catanese, F., Lebrun, C., On the Scalar Curvature of Einstein Manifolds, Prépublication, Universität Göttingen.
- [20] Chang, S.Y.A., Yang, P.C., Prescribing Gaussian Curvature on S2, Acta Math.159 (1987), 215-259. Zbl0636.53053MR908146
- [21] Chrusciel, P., Semi-Global Existence and Convergence of Solutions of the Robinson-Trautman (2-dimensional Calabi) Equation, Commun. Math. Phys.137 (1991), 289-313. Zbl0729.53071MR1101689
- [22] Debarre, O., Variétés de Fano, in Séminaire Bourbaki1996-97, Exposé n° 827, 1-25. MR1627112
- [23] Demailly, J.-P., Kollár, J., Semi-continuity of Complex Singularity Exponents and Kähler-Einstein Metrics on Fano Orbifolds, Prépublication Institut Fourier, Grenoble, à paraître. Zbl0994.32021
- [24] Demazure, M., Surfaces de Del Pezzo, in Séminaire sur les singularités des surfaces1976-1977, Palaiseau, Lect. Notes in Math.777, Springer-Verlag, Berlin- Heidelberg-New York, 1980, 23-69. Zbl0444.14024
- [25] Ding, W., Remarks on the Existence Problem of Positive Kähler-Einstein Met- rics, Math. Ann.282 (1988), 463-471. Zbl0661.53045MR967024
- [26] Ding, W., Tian, G., Kähler-Einstein Metrics and the Generalized Futaki In- variant, Inventiones Math.110 (1992), 315-335. Zbl0779.53044MR1185586
- [27] Ding, W., Tian, G., The Generalized Moser-Trudinger Inequality, in Proc. Int. Conf. on Non-Linear Analysis, Tianjin, K.C. Chang et al. Ed., World Scientific, Singapore, 1992, 57-70. Zbl1049.53507
- [28] Donaldson, S.K., Anti-Self-Dual Yang-Mills Connections over Complex Algebraic Surfaces and Stable Vector Bundles, Proc. London Math. Soc.50 (1985), 1-26. Zbl0529.53018MR765366
- [29] Donaldson, S.K., Infinite Determinants, Stable Bundles and Curvature, Duke Math. J.54 (1987), 231-247. Zbl0627.53052MR885784
- [30] Donaldson, S.K., Remarks on Gauge Theory, Complex Geometry and 4-Manifold Topology, The Fields Medal Volume, M.F. Atiyah and D. Iagolnitzer Ed., World Scientific, 1997. MR1622931
- [31] Donaldson, S.K., Symmetric Spaces, Kähler Geometry and Hamiltonian Dynamics, Preprint, Oxford Univ., Oxford, 1997. Zbl0972.53025MR1736211
- [32] Futaki, A., On Compact Kähler Manifolds of Constant Scalar Curvatures, Proc. Japan Acad. Sci.59 (1983), 401-402. Zbl0539.53048MR726535
- [33] Futaki, A., An Obstruction to the Existence of Kähler-Einstein Metrics, Inventiones Math.73 (1983), 437-443. Zbl0506.53030MR718940
- [34] Futaki, A., The Ricci Curvature of Symplectic Quotients of Fano Manifolds, Tôhoku Math. J.39 (1987), 329-339. Zbl0629.53057MR902573
- [35] Futaki, A., Kähler-Einstein Metrics and Integral Invariants, Lect. Notes in Math.1314, Springer, Berlin-Heidelberg-New York, 1988. Zbl0646.53045MR947341
- [36] Futaki, A., Mabuchi, T., An Obstruction Class and a Representation of Holomorphic Automorphisms, in Geometry and Analysis on Manifolds, Lect. Notes in Math.1339, Springer, Berlin-Heidelberg-New York-Tokyo, (1988), 127-141. Zbl0646.32015MR961478
- [37] Futaki, A., Mabuchi, T., Sakane, Y., Einstein-Kähler Metrics with Positive Ricci Curvature, in Kähler Metrics and Moduli Spaces, Adv. Stud. Pure Math.18 (1990), 11-83. Zbl0755.32028MR1145246
- [38] Kazdan, J.L., Warner, F.W., Curvature Functions for Compact 2-manifolds, Ann. Math.99 (1974), 14-47. Zbl0273.53034MR343205
- [39] Kobayashi, S., On Compact Kähler Manifolds with Positive Definite Ricci Tensor, Ann. Math.74 (1961), 570-574. Zbl0107.16002MR133086
- [40] Kobayashi, S., Curvature and Stability of Vector Bundles, Proc. Japan Acad. Sci.58 (1982), 158-162. Zbl0546.53041MR664562
- [41] Kobayashi, S., Differential Geometry of Complex Vector Bundles, Publ. Math. Soc. Japan15, Princeton Univ. Press, Princeton, and Iwanami Shoten, Tokyo, 1987. Zbl0708.53002MR909698
- [42] Kohn, J.J., Subellipticity of the ∂-Neumann Problem on Pseudo-Convex Domains: Sufficient Conditions, Acta Math.142 (1979), 79-122. Zbl0395.35069
- [43] Koiso, N., Sakane, Y., Non-Homogeneous Kähler-Einstein Metrics on Compact Complex Manifolds, in Curvature and Topology of Riemannian Manifolds, Lect. Notes in Math.1201, Springer, Berlin-Heidelberg-New York-Tokyo, 1986, 165-179. Zbl0591.53056MR859583
- [44] Lebrun, C., Polarized 4-Manifolds, Extremal Kähler Metrics and Seiberg-Wit- ten Theory, Math. Res. Lett.2 (1995), 653-662. Zbl0874.53051MR1359969
- [45] Lebrun, C., Simanca, S., Extremal Kähler Metrics and Complex Deformation Theory, Geom. Funct. Anal.4 (1994), 298-336. Zbl0801.53050MR1274118
- [46] Lichnerowicz, A., Sur les transformations analytiques des variétés kählériennes, C.R. Acad. Sci. Paris244 (1957), 3011-3014. Zbl0080.37501MR94479
- [47] Lübke, M., Stability of Einstein-Kähler Vector Bundles, Manuscripta Math.42 (1983), 245-257. Zbl0558.53037MR701206
- [48] Mabuchi, T., Some Symplectic Geometry on Compact Kähler Manifolds, Osaka Math. J.24 (1987), 227-252. Zbl0645.53038MR909015
- [49] Mabuchi, T., Einstein-Kähler Forms, Futaki Invariants and Convex Geometry on Toric Fano Manifolds, Osaka Math. J.24 (1987), 705-737. Zbl0661.53032MR927057
- [50] Margerin, C., Fibrés stables et métriques d'Hermite-Einstein, in Séminaire Bourbaki1986-87, Exposé n°683, Astérisque152-153 (1987), 263-283. Zbl0637.53080MR936859
- [51] Matsushima, Y., Sur les espaces homogènes kählériens d'un groupe réductif, Nagoya Math. J.11 (1957), 53-60. Zbl0099.37501MR87177
- [52] Matsushima, Y., Sur la structure du groupe d'homéomorphismes analytiques d'une certaine variété kählérienne, Nagoya Math. J.11 (1957), 145-150. Zbl0091.34803MR94478
- [53] Matsushima, Y., Remarks on Kähler-Einstein Manifolds, Nagoya Math. J.46 (1972), 161-173. Zbl0249.53050MR303478
- [54] Moser, J., A Sharp Form of an Inequality by N. Trudinger, Indiana Math. J.20 (1971), 1077-1091. Zbl0213.13001MR301504
- [55] Mumford, D., Stability of Projective Varieties, Enseignement Math.23 (1977), fasc. 1-2, 39-110. Zbl0363.14003MR450272
- [56] Nadel, A.M., Multiplier Ideal Sheaves and Existence of Kähler-Einstein Metrics of Positive Scalar Curvature, Proc. Nat. Acad. Sci. U.S.A.86 (1989), 7299- 7300. Zbl0711.53056MR1015491
- [57] Nadel, A.M., Multiplier Ideal Sheaves and Kähler-Einstein Metrics of Positive Scalar Curvature, Ann. Math.132 (1990), 549-596. Zbl0731.53063MR1078269
- [58] Nadel, A.M., Multiplier Ideal Sheaves and Futaki's Invariant, Preprint, Univ. Southern California, Los Angeles, 1997. MR1702085
- [59] Nakagawa, Y., Einstein-Kähler toric Fano fourfolds, Tôhoku Math. J.45 (1993), 297-310. Zbl0778.53040MR1215931
- [60] Nakagawa, Y., Combinatorial Formulae for Futaki Characters and Generalized Killing Forms on Toric Fano Manifolds, Prépublication, Tôhoku Univ., Sendai. Zbl1015.53045
- [61] Onofri, E., On the Positivity of the Effective Action in a Theory of Random Surfaces, Commun. Math. Phys.86 (1982), 321-326. Zbl0506.47031MR677001
- [62] Sakane, Y., Examples of Compact Kähler-Einstein Manifolds with Positive Ricci Curvature, Osaka J. Math.31 (1986), 585-617. Zbl0636.53068MR866267
- [63] Semmes, S., Complex Monge-Ampère Equations and Symplectic Manifolds, Amer. J. Math.114 (1992), 495-550. Zbl0790.32017MR1165352
- [64] Première classe de Chern et courbure de Ricci : preuve de la conjecture de Calabi, Séminaire Palaiseau, Astérisque58 (1978). Zbl0397.35028MR525893
- [65] Siu, Y.T., Lectures on Hermite-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics, Deutscher Math. Ver. Seminar8, Birkhäuser, Basel, 1987. Zbl0631.53004MR904673
- [66] Siu, Y.T., Kähler-Einstein Metrics for the Case of Positive First Chern Class, in Complex Analysis III, C.A. Berenstein Ed., Lect. Notes in Math.1277, Springer-Verlag, Berlin-Heidelberg-New York, (1987), 120-130. Zbl0623.53029MR922336
- [67] Siu, Y.T., The Existence of Kähler-Einstein Metrics on Manifolds with Positive Anticanonical Line Bundle and a Suitable Finite Symmetry Group, Ann. Math.127 (1988), 585-627. Zbl0651.53035MR942521
- [68] Skoda, H., Sous-ensembles analytiques d'ordre fini dans Cn, Bull. Soc. Math. France100 (1972), 353-408. Zbl0246.32009MR352517
- [69] Subramanian, S., Stability of the Tangent Bundle and Existence of a Kähler-Einstein Metric, Math. Ann.291 (1991), 573-577. Zbl0766.14009MR1135531
- [70] Tian, G., On Kähler-Einstein Metrics on Certain Manifolds with c1(M) > 0, Inventiones Math.89 (1987), 225-246. Zbl0599.53046MR894378
- [71] Tian, G., On Calabi's Conjecture for Complex Surfaces with Positive First Chern Class, Inventiones Math.101 (1990), 101-172. Zbl0716.32019MR1055713
- [72] Tian, G., A Harnack Inequality for some Complex Monge-Ampère Equations, J. Differential Geom.29 (1989), 481-488. Zbl0681.53035MR992327
- [73] Tian, G., On Stability of the Tangent Bundles of Fano Varieties, Intern. J. Math.3 (1992), 401-413. Zbl0779.53009MR1163733
- [74] Tian, G., Kähler-Einstein Metrics on Algebraic Manifolds, in C.I.M.E. Conf. Transcendental Methods in Algebraic Geom., F. Catanese, C. Ciliberto Ed., 1994. Zbl0896.32003
- [75] Tian, G., The K-Energy on Hypersurfaces and Stability, Commun. Geom. Anal.2 (1994), 239-265. Zbl0846.32019MR1312688
- [76] Tian, G., Kähler-Einstein Metrics with Positive Scalar Curvature, Inventiones Math., à paraître. Zbl0892.53027
- [77] Tian, G., Yau, S.T., Kähler-Einstein Metrics on Complex Surfaces with c1 (M) positive, Commun. Math. Phys.112 (1987), 175-203. Zbl0631.53052MR904143
- [78] Tian, G., Zhu, X., A Non-Linear Inequality of Moser-Trudinger Type, Preprint Mass. Inst. Technology, Cambridge. Zbl0987.32017
- [79] Trudinger, N., On Imbeddings into Orlicz Spaces and some Applications, J. Math. Phys.17 (1967), 473-483. Zbl0163.36402MR216286
- [80] Uhlenbeck, K.K., Yau, S.T., On the Existence of Hermite-Yang-Mills Connections in Stable Vector Bundles, Commun. Pure Appl. Math.39 (1986), 257-293. Zbl0615.58045MR861491
- [81] Yau, S.T., On the Curvature of Compact Hermitian Manifolds, Inventiones Math.25 (1974), 213-239. Zbl0299.53039MR382706
- [82] Yau, S.T., On Calabi's Conjecture and some New Results in Algebraic Geometry, Proc. Nat. Acad. Sci. U.S.A.74 (1977), 1798-1799. Zbl0355.32028MR451180
- [83] Yau, S.T., On the Ricci-Curvature of a Complex Kähler Manifold and the Complex Monge-Ampère Equation, I, Commun. Pure Appl. Math.31 (1978), 339- 411. Zbl0369.53059MR480350
- [84] Yau, S.T., Non-Linear Analysis in Geometry, Enseignement Math.33 (1986), 1-54. Zbl0631.53003
- [85] Yau, S.T., Open Problems in Geometry, in Differential Geometry, Part I : Partial Differential Equations on Manifolds, Proc. Symp. Pure Math.54, (1993), 1-28. Zbl0801.53001MR1216573
- [86] Yotov, M., Nadel's Subschemes of Fano Manifolds with a Picard Group Isomorphic to Z, Preprint, Humboldt Univ., 1996.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.