Minimal models of algebraic threefolds : Mori's program

János Kollár

Séminaire Bourbaki (1988-1989)

  • Volume: 31, page 303-326
  • ISSN: 0303-1179

How to cite

top

Kollár, János. "Minimal models of algebraic threefolds : Mori's program." Séminaire Bourbaki 31 (1988-1989): 303-326. <http://eudml.org/doc/110112>.

@article{Kollár1988-1989,
author = {Kollár, János},
journal = {Séminaire Bourbaki},
keywords = {flip; nef; terminal singularities; small contraction; extremal ray; cone of curves; Mori's program; minimal model conjecture for threefolds},
language = {eng},
pages = {303-326},
publisher = {Société Mathématique de France},
title = {Minimal models of algebraic threefolds : Mori's program},
url = {http://eudml.org/doc/110112},
volume = {31},
year = {1988-1989},
}

TY - JOUR
AU - Kollár, János
TI - Minimal models of algebraic threefolds : Mori's program
JO - Séminaire Bourbaki
PY - 1988-1989
PB - Société Mathématique de France
VL - 31
SP - 303
EP - 326
LA - eng
KW - flip; nef; terminal singularities; small contraction; extremal ray; cone of curves; Mori's program; minimal model conjecture for threefolds
UR - http://eudml.org/doc/110112
ER -

References

top
  1. H. Clemens, J. Kollár and S. Mori, "Higher Dimensional Complex Geometry," Asterisque166, 1988 This booklet contains the simplest known proofs of (2.9) and (4.10). It also contains a lot of background material.. Zbl0689.14016MR1004926
  2. Y. Kawamata, K. Matsuda and K. Matsuki, Introduction to the Minimal Model Problem, in "Algebraic Geometry, Sendai," Adv. Stud. Pure Math. vol 10. T. Oda ed., Kinokuniya - North-Holland, 1987, pp. 283-360. The most complete discussion of (2.9) and related questions. Zbl0672.14006MR946243
  3. J. Kollár, The structure of algebraic threefolds - an introduction to Mori's program, Bull. AMS17 (1987), 211-273. A leisurely introduction, aimed at all mathematicians. Zbl0649.14022MR903730
  4. M. Reid, Young person's guide to canonical singularities, in "Algebraic Geometry Bowdoin 1985," Proc. Symp. Pure Math. vol. 46, 1987, pp. 345-416. A nice treatment of the relevant singularities. Zbl0634.14003MR927963
  5. P.M.H. Wilson, Toward a birational classification of algebraic varieties, Bull. London Math. Soc.19 (1987), 1-48. An overview aimed at algebraic geometers, written before [Mo4] appeared. Zbl0612.14033MR865038
  6. [B] X. Benveniste, Sur l'anneau canonique de certaines variétés de dimension 3, Inv. Math.73 (1983), 157-164. Zbl0539.14025MR707354
  7. [D] V.I. Danilov, The geometry of toric varieties, Russian Math. Surveys33 (1978), 97-154. Zbl0425.14013MR495499
  8. [F] T. Fujita, Zariski decomposition and canonical rings of elliptic threefolds, J. Math. Soc. Japan38 (1986), 19-37. Zbl0627.14031MR816221
  9. [Ka1] Y. Kawamata, On the finiteness of generators of the pluri-canonical ring for a threefold of general type, Amer. J. Math.106 (1984), 1503-1512. Zbl0587.14027MR765589
  10. [Ka2] Y. Kawamata, The cone of curves of algebraic varieties, Ann. of Math.119 (1984), 603-633. Zbl0544.14009MR744865
  11. [Ka3] Y. Kawamata, The crepant blowing-up of 3-dimensional canonical singularities and its application to the degeneration of surfaces, Ann. of Math127 (1988), 93-163. Zbl0651.14005MR924674
  12. [Ko1] J. Kollár, The Cone Theorem, Ann. of Math.120 (1984), 1-5. Zbl0544.14010MR750714
  13. [KM] J. Kollár and S. Mori, soon to be written up. 
  14. [KSB] J. Kollár and N. Shepherd-Barron, Threefolds and deformations of surface singularities, Inv. Math.91 (1988), 299-338. Zbl0642.14008MR922803
  15. [Mi] Y. Miyaoka, On the Kodaira dimension of minimal threefolds, Math. Ann.281 (1988), 325-332. Zbl0625.14023MR949837
  16. [MM] Y. Miyaoka and S. Mori, A numerical criterion of uniruledness, Ann. of Math124 (1986), 65-69. Zbl0606.14030MR847952
  17. [Mol] S. Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math.116 (1982), 133-176.. Zbl0557.14021MR662120
  18. [Mo2] S. Mori, On 3-dimensional terminal singularities, Nagoya Math. J.98 (1985), 43-66. Zbl0589.14005MR792770
  19. [Mo3] S. Mori, Minimal models for semistable degenerations of surfaces, Lectures at Columbia University (1985), unpublished. 
  20. [Mo4] S. Mori, Flip theorem and the existence of minimal models for 3-folds, Journal AMS1 (1988), 117-253. Zbl0649.14023MR924704
  21. [MS] D. Morrison and G. Stevens, Terminal quotient singularities in dimension three and four, Proc. AMS90 (1984), 15-20. Zbl0536.14003MR722406
  22. [P] T. Peternell, Rational curves on Moishezon threefolds, in "Complex Analysis and Algebraic Geometry," Springer LN. 1194, 1986, pp. 133-144. Zbl0602.14039MR855881
  23. [R1] M. Reid, Canonical Threefolds, in "Géometrie Algébrique Angers," A. Beauville ed., Sijthoff & Noordhoff, 1980, pp. 273-310. Zbl0451.14014MR605348
  24. [R2] M. Reid, Projective morphisms according to Kawamata, preprint, Univ. of Warwick (1983). MR717617
  25. [R3] M. Reid, Minimal models of canonical threefolds, in "Algebraic Varieties and Analytic Varieties," Adv. Stud. Pure Math. vol 1. S. Iitaka ed., Kinokuniya and North-Holland, 1983, pp. 131-180. Zbl0558.14028MR715649
  26. [S1] V.V. Shokurov, letter to M. Reid (1985). 
  27. [S2] V.V. Shokurov, Theorem on nonvanishing, Math. USSR Izv.26 (1986), 591-604. Zbl0605.14006
  28. [T] S. Tsunoda, Degenerations of Surfaces, in "Algebraic Geometry, Sendai," Adv. Stud. Pure Math. vol 10. T. Oda ed., Kinokuniya - North-Holland, 1987, pp. 755-764. Zbl0682.14007MR946256

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.