Minimal models of algebraic threefolds : Mori's program
Séminaire Bourbaki (1988-1989)
- Volume: 31, page 303-326
- ISSN: 0303-1179
Access Full Article
topHow to cite
topKollár, János. "Minimal models of algebraic threefolds : Mori's program." Séminaire Bourbaki 31 (1988-1989): 303-326. <http://eudml.org/doc/110112>.
@article{Kollár1988-1989,
author = {Kollár, János},
journal = {Séminaire Bourbaki},
keywords = {flip; nef; terminal singularities; small contraction; extremal ray; cone of curves; Mori's program; minimal model conjecture for threefolds},
language = {eng},
pages = {303-326},
publisher = {Société Mathématique de France},
title = {Minimal models of algebraic threefolds : Mori's program},
url = {http://eudml.org/doc/110112},
volume = {31},
year = {1988-1989},
}
TY - JOUR
AU - Kollár, János
TI - Minimal models of algebraic threefolds : Mori's program
JO - Séminaire Bourbaki
PY - 1988-1989
PB - Société Mathématique de France
VL - 31
SP - 303
EP - 326
LA - eng
KW - flip; nef; terminal singularities; small contraction; extremal ray; cone of curves; Mori's program; minimal model conjecture for threefolds
UR - http://eudml.org/doc/110112
ER -
References
top- H. Clemens, J. Kollár and S. Mori, "Higher Dimensional Complex Geometry," Asterisque166, 1988 This booklet contains the simplest known proofs of (2.9) and (4.10). It also contains a lot of background material.. Zbl0689.14016MR1004926
- Y. Kawamata, K. Matsuda and K. Matsuki, Introduction to the Minimal Model Problem, in "Algebraic Geometry, Sendai," Adv. Stud. Pure Math. vol 10. T. Oda ed., Kinokuniya - North-Holland, 1987, pp. 283-360. The most complete discussion of (2.9) and related questions. Zbl0672.14006MR946243
- J. Kollár, The structure of algebraic threefolds - an introduction to Mori's program, Bull. AMS17 (1987), 211-273. A leisurely introduction, aimed at all mathematicians. Zbl0649.14022MR903730
- M. Reid, Young person's guide to canonical singularities, in "Algebraic Geometry Bowdoin 1985," Proc. Symp. Pure Math. vol. 46, 1987, pp. 345-416. A nice treatment of the relevant singularities. Zbl0634.14003MR927963
- P.M.H. Wilson, Toward a birational classification of algebraic varieties, Bull. London Math. Soc.19 (1987), 1-48. An overview aimed at algebraic geometers, written before [Mo4] appeared. Zbl0612.14033MR865038
- [B] X. Benveniste, Sur l'anneau canonique de certaines variétés de dimension 3, Inv. Math.73 (1983), 157-164. Zbl0539.14025MR707354
- [D] V.I. Danilov, The geometry of toric varieties, Russian Math. Surveys33 (1978), 97-154. Zbl0425.14013MR495499
- [F] T. Fujita, Zariski decomposition and canonical rings of elliptic threefolds, J. Math. Soc. Japan38 (1986), 19-37. Zbl0627.14031MR816221
- [Ka1] Y. Kawamata, On the finiteness of generators of the pluri-canonical ring for a threefold of general type, Amer. J. Math.106 (1984), 1503-1512. Zbl0587.14027MR765589
- [Ka2] Y. Kawamata, The cone of curves of algebraic varieties, Ann. of Math.119 (1984), 603-633. Zbl0544.14009MR744865
- [Ka3] Y. Kawamata, The crepant blowing-up of 3-dimensional canonical singularities and its application to the degeneration of surfaces, Ann. of Math127 (1988), 93-163. Zbl0651.14005MR924674
- [Ko1] J. Kollár, The Cone Theorem, Ann. of Math.120 (1984), 1-5. Zbl0544.14010MR750714
- [KM] J. Kollár and S. Mori, soon to be written up.
- [KSB] J. Kollár and N. Shepherd-Barron, Threefolds and deformations of surface singularities, Inv. Math.91 (1988), 299-338. Zbl0642.14008MR922803
- [Mi] Y. Miyaoka, On the Kodaira dimension of minimal threefolds, Math. Ann.281 (1988), 325-332. Zbl0625.14023MR949837
- [MM] Y. Miyaoka and S. Mori, A numerical criterion of uniruledness, Ann. of Math124 (1986), 65-69. Zbl0606.14030MR847952
- [Mol] S. Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math.116 (1982), 133-176.. Zbl0557.14021MR662120
- [Mo2] S. Mori, On 3-dimensional terminal singularities, Nagoya Math. J.98 (1985), 43-66. Zbl0589.14005MR792770
- [Mo3] S. Mori, Minimal models for semistable degenerations of surfaces, Lectures at Columbia University (1985), unpublished.
- [Mo4] S. Mori, Flip theorem and the existence of minimal models for 3-folds, Journal AMS1 (1988), 117-253. Zbl0649.14023MR924704
- [MS] D. Morrison and G. Stevens, Terminal quotient singularities in dimension three and four, Proc. AMS90 (1984), 15-20. Zbl0536.14003MR722406
- [P] T. Peternell, Rational curves on Moishezon threefolds, in "Complex Analysis and Algebraic Geometry," Springer LN. 1194, 1986, pp. 133-144. Zbl0602.14039MR855881
- [R1] M. Reid, Canonical Threefolds, in "Géometrie Algébrique Angers," A. Beauville ed., Sijthoff & Noordhoff, 1980, pp. 273-310. Zbl0451.14014MR605348
- [R2] M. Reid, Projective morphisms according to Kawamata, preprint, Univ. of Warwick (1983). MR717617
- [R3] M. Reid, Minimal models of canonical threefolds, in "Algebraic Varieties and Analytic Varieties," Adv. Stud. Pure Math. vol 1. S. Iitaka ed., Kinokuniya and North-Holland, 1983, pp. 131-180. Zbl0558.14028MR715649
- [S1] V.V. Shokurov, letter to M. Reid (1985).
- [S2] V.V. Shokurov, Theorem on nonvanishing, Math. USSR Izv.26 (1986), 591-604. Zbl0605.14006
- [T] S. Tsunoda, Degenerations of Surfaces, in "Algebraic Geometry, Sendai," Adv. Stud. Pure Math. vol 10. T. Oda ed., Kinokuniya - North-Holland, 1987, pp. 755-764. Zbl0682.14007MR946256
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.