Résultats récents d'algèbre commutative effective

Bernard Teissier

Séminaire Bourbaki (1989-1990)

  • Volume: 32, page 107-131
  • ISSN: 0303-1179

How to cite

top

Teissier, Bernard. "Résultats récents d'algèbre commutative effective." Séminaire Bourbaki 32 (1989-1990): 107-131. <http://eudml.org/doc/110120>.

@article{Teissier1989-1990,
author = {Teissier, Bernard},
journal = {Séminaire Bourbaki},
keywords = {construct effectively a decomposition of a multivariate polynomial; effective zeros for a polynomial; standard ideal bases; double exponential problems; simple exponential problems},
language = {fre},
pages = {107-131},
publisher = {Société Mathématique de France},
title = {Résultats récents d'algèbre commutative effective},
url = {http://eudml.org/doc/110120},
volume = {32},
year = {1989-1990},
}

TY - JOUR
AU - Teissier, Bernard
TI - Résultats récents d'algèbre commutative effective
JO - Séminaire Bourbaki
PY - 1989-1990
PB - Société Mathématique de France
VL - 32
SP - 107
EP - 131
LA - fre
KW - construct effectively a decomposition of a multivariate polynomial; effective zeros for a polynomial; standard ideal bases; double exponential problems; simple exponential problems
UR - http://eudml.org/doc/110120
ER -

References

top
  1. [1] S.Ju. Arakelov, Intersection theory of divisors on an arithmetic surface, Izv. Akad. Nauk. SSSR38 (1974), No.6, 1167-1180. Zbl0355.14002MR472815
  2. [2] Jean-Marie Arnaudiès, Elimination et théorie de Galois.Thèse, Université Paul Sabatier de Toulouse, Janvier1989. 
  3. [3] Michael Atiyah, Resolution of singularities and division of distributions, Comm. Pure and App. Math, 23, (1970), 145-150. Zbl0188.19405MR256156
  4. [4] David A. Bayer, The division algorithm and the Hilbert Scheme , Thèse, Université Harvard, 1982. 
  5. [5] Carlos A. Berenstein and Alain Yger, Effective Bézout identities in Q[z1,..., zn], Preprint University of Maryland, Sept.1988. MR1088983
  6. [6] Carlos A. Berenstein and Daniele Struppa, On explicit solutions to the Bézout equation, Syst. Control Letters4 (1984), 33-39. Zbl0538.15005
  7. [7] Carlos A. Berenstein and Alain Yger, Le problème de la déconvolution, J. Funct. Anal.54 (1983), 113-160. Zbl0526.46042
  8. [8] Carlos A. Berenstein and Alain Yger, Une formule de Jacobi et ses conséquences, à paraître dans Annales sci. E.N.S. Zbl0742.32004
  9. [9] I.N. Bernstein, The analytic continuation of generalized functions with respect to a parameter, Funct. An. Appl.6 (1972), 273-285. Zbl0282.46038MR320735
  10. [10] Daniel Bertrand, Lemmes de zéros et nombres transcendants, Séminaire Bourbaki, exposé No. 652, Nov. 1985. Astérisque No. 145-146, (1987) p.21-44. Zbl0613.14001MR880024
  11. [11] W. Dale Brownawell, A prime power version of the Nullstellensatz. Preprint 1989. MR1033015
  12. [12] W. Dale Brownawell, Bounds for the degree in the Nullstellensatz. Annals of Math.126 (1987), 577-591. Zbl0641.14001MR916719
  13. [13] W. Dale Brownawell, Bornes effectives pour l'exposant dans le théorème des zéros. C.R.A.S., Paris t.305, série 1 (1987), 287-290. Zbl0648.13011MR910361
  14. [14] W. Dale Brownawell, Local diophantine nullstellen inequalities. J.A.M.S.1, No.2 (1988), 311-322. Zbl0651.10022MR928261
  15. [15] W. Dale Brownawell and D.W. Masser, Multiplicity estimates for analytic functions, II, Duke Math. J.47, No.2, June 1980. Zbl0461.10027MR575898
  16. [16] L. Caniglia, A. Galligo, J. Heintz, Borne simple exponentielle pour les degrés dans le théorème des zéros sur un corps de caractéristique quelconque. C.R.A.S., Paris307 (1988), 255-258. Zbl0686.14001MR956817
  17. [17] L. Caniglia, A. Galligo, J. Heintz, Some new effectivity bounds in computational geometry. 6th International Conference on applied algebra (AAECC-6)Springer LNCS No. 357 (1989), 131-151. Zbl0685.68044MR1008498
  18. [18] Michel Demazure, Le théorème de complexité de Mayr-Meyer, Géométrie algébrique et applications,Travaux en cours No.22, Hermann1987. Zbl0626.20044MR907905
  19. [19] Noaï Fitchas et André Galligo: Nullstellensatz effectif et conjecture de Serre, in Séminaire "Structures algébriques ordonnées"1987-88, Université Paris7. 
  20. [20] William Fulton: Intersection theory, Ergebnisse der Mathematik, Springer1984. Zbl0541.14005MR732620
  21. [21] Henri Gillet and Christophe Soulé: Arithmetic intersection theory. Preprint IHES 1988. Zbl0676.14007MR1087394
  22. [22] Henri Gillet and Christophe Soulé: Amplitude arithmetique. CRAS Paris307 (1988), 887-890. Zbl0676.14007MR974432
  23. [23] Henri Gillet and Christophe Soulé: Characteristic classes for algebraic vector bundles with hermitian metrics. A paraître dans Annals of Math. Zbl0715.14018
  24. [24] Alexander Grothendieck, Local cohomology (Notes by R. Hartshorne), Springer L.N.M. No. 41, Springer1967. Zbl0185.49202MR224620
  25. [25] J. Heintz, M.-F. Coste-Roy, P. Solernó, On the complexity of semialgebraic sets. A paraître dans Proc. IFIP, World Computer congress, San Francisco1989. 
  26. [26] Greta Hermann, Die Frage der endliche vielen Schritte in der Theorie der Polinomideale, Math. Ann. 95 (1926), p.736-788. Zbl52.0127.01MR1512302JFM52.0127.01
  27. [27] Lars Hörmander, Generators for some rings of analytic functions, Bull. A.M.S., 73 (1967), 943-949. Zbl0172.41701MR226387
  28. [28] J.J. Kelleher and B.A. Taylor, Finitely generated ideals in rings of analytic functions, Math. Ann.193 (1971), 225-237. Zbl0207.12906MR302934
  29. [29] János Kollár, Sharp effective Nullstellensatz. J.A.M.S.1 (1988), 963- 975. Zbl0682.14001MR944576
  30. [30] János Kollár, A Lojasiewicz-type inequality for Algebraic Varieties, Preprint, University of Utah, 1990. 
  31. [31] E. Lasker, Zur Theorie der Moduln und Ideale, Math. Ann. 60, (1905), 20-116, Errata p.607-608. MR1511288JFM36.0292.01
  32. [32] Daniel Lazard, Algorithmes fondamentaux en algèbre commutative, Astérisque No. 38-39. Zbl0353.13002
  33. [33] Daniel Lazard, Algèbre linéaire sur k[x1,..., xn] et élimination, Bull. S.M.F.105 (1977), 165-190. Zbl0447.13008MR491702
  34. [34] Monique Lejeune-Jalabert, Effectivité de calculs polynomiaux, Cours de DEA, Institut Fourier, 1984-85. A paraître. 
  35. [35] Monique Lejeune-Jalabert, Liaison et résidus, Algebraic Geometry, Springer LNM No. 961, 1982, p.233. Zbl0539.13013MR708336
  36. [36] Joseph Lipman and Bernard Teissier, Pseudo-rational local rings and a theorem of Briançon-Skoda, Mich. Math. J.28 (1981), 97-116. Zbl0464.13005MR600418
  37. [37] F.S. Macaulay, The algebraic theory of modular systems, Cambridge tracts in Math. No.19, Cambridge1916, et Stechert-Hafner, New York1964. Zbl46.0167.01JFM46.0167.01
  38. [38] D.W. Masser and G. Wüstholz, Fields of large transcendance degree generated by values of elliptic functions, Invent. Math.72 (1983), 407-464. Zbl0516.10027MR704399
  39. [39] E.W. Mayr and A.R. Meyer, The complexity of the word problems for commutative semi-groups and polynomial ideals, Adv. in Math.46 (1982), 305-329. Zbl0506.03007MR683204
  40. [40] Yu.V. Nesterenko, Estimates for the order of zeros of functions of a certain class and their applications in the theory of transcendental numbers, Izv. Akad. Nauk USSR41 (1977)= Math. USSR Izv., 11 (1977), 239-270. Zbl0378.10022
  41. [41] Patrice Philippon, Dénominateurs dans le théorème des zéros de Hilbert, Prépublications, Institut Henri Poincaré, 1989. (soumis à Acta arithmetica) Zbl0679.13010
  42. [42] Patrice Philippon, Théorème des zéros effectif d'après J. Kollár, Problèmes diophantiens, Publ. Math. Univ. Paris6, No.88, 1988-89. 
  43. [43] J.L. Rabinowitsch, Zum Hilbertschen Nullstellensatz, Math. Ann. 102 (1929), p.520. Zbl55.0103.04JFM55.0103.04
  44. [44] Lorenzo Robbiano (Ed.) Computational aspects of commutative algebra, Academic Press1989. Zbl0796.00017MR1262830
  45. [45] Pierre Samuel, Méthodes d'algèbre abstraite en Géométrie algébrique. Springer, Ergebnisse der Math. No.4, 1967. Zbl0146.16901MR213347
  46. [46] Bernard Schiffman, Degree bounds for the division problem in polynomial ideals, Mich. Math. Journ.36, (1989), 163-171. Zbl0691.12010MR1000520
  47. [47] Henri Skoda, Application des techniques L2 à l'étude des idéaux d'une algèbre de fonctions holomorphes avec poids, Ann. sci. E.N.S.5 (1972), 545-579. Zbl0254.32017MR333246
  48. [48] Leendert Van Gastel: Excess intersections, Thèse, Université d'Utrecht, 1989. 
  49. [49] W. Vogel: Lectures on results on Bézout's theorem, Tata InstituteLecture notes, Bombay1984. Zbl0553.14022

Citations in EuDML Documents

top
  1. Michel Hickel, Solution d'une conjecture de C. Berenstein - A. Yger et invariants de contact à l'infini
  2. A. Fabianom, G. Pucci, A. Yger, Effective Nullstellensatz and geometric degree for zero-dimensional ideals
  3. Carlos A. Berenstein, A. Yger, Une formule de Jacobi et ses conséquences
  4. Carlos D’Andrea, Teresa Krick, Martín Sombra, Heights of varieties in multiprojective spaces and arithmetic Nullstellensätze
  5. Mats Andersson, The membership problem for polynomial ideals in terms of residue currents

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.