Heights of varieties in multiprojective spaces and arithmetic Nullstellensätze
Carlos D’Andrea; Teresa Krick; Martín Sombra
Annales scientifiques de l'École Normale Supérieure (2013)
- Volume: 46, Issue: 4, page 549-627
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] M. Aschenbrenner, Ideal membership in polynomial rings over the integers, J. Amer. Math. Soc.17 (2004), 407–441. Zbl1099.13045MR2051617
- [2] C. A. Berenstein & A. Yger, Effective Bézout identities in , Acta Math.166 (1991), 69–120. MR1088983
- [3] Y. F. Bilu & M. Strambi, Quantitative Riemann existence theorem over a number field, Acta Arith.145 (2010), 319–339. Zbl1222.11082MR2738151
- [4] E. Bombieri, J. Bourgain & S. V. Konyagin, Roots of polynomials in subgroups of and applications to congruences, Int. Math. Res. Not.2009 (2009), 802–834. Zbl1213.11058MR2482126
- [5] W. D. Brownawell, Bounds for the degrees in the Nullstellensatz, Ann. of Math.126 (1987), 577–591. Zbl0641.14001MR916719
- [6] W. D. Brownawell, The Hilbert Nullstellensatz, inequalities for polynomials, and algebraic independence, in Introduction to algebraic independence theory, Lecture Notes in Math. 1752, Springer, 2001, 239–248. MR1837838
- [7] J. I. Burgos Gil, P. Philippon & M. Sombra, Arithmetic geometry of toric varieties. Metrics, measures and heights, preprint arXiv:1105.5584. Zbl1311.14050
- [8] W.-L. Chow & B. L. van der Waerden, Zur algebraischen Geometrie. IX, Math. Ann. 113 (1937), 692–704. Zbl0016.04004MR1513117
- [9] X. Dahan, A. Kadri & É. Schost, Bit-size estimates for triangular sets in positive dimension, J. Complexity28 (2012), 109–135. Zbl1246.13039MR2871788
- [10] S. David & P. Philippon, Minorations des hauteurs normalisées des sous-variétés des tores, Ann. Scuola Norm. Sup. Pisa Cl. Sci.28 (1999), 489–543. MR1736526
- [11] W. Fulton, Intersection theory, Ergebn. Math. Grenzg. 2, Springer, 1984. Zbl0541.14005MR732620
- [12] I. M. Gelʼfand, M. M. Kapranov & A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkhäuser, 1994. Zbl0827.14036
- [13] R. Hartshorne, Algebraic geometry, Graduate Texts in Math. 52, Springer, 1977. MR463157
- [14] Z. Jelonek, On the effective Nullstellensatz, Invent. Math.162 (2005), 1–17. MR2198324
- [15] J.-P. Jouanolou, Théorèmes de Bertini et applications, Progress in Math. 42, Birkhäuser, 1983. MR725671
- [16] P. Koiran, Hilbert’s Nullstellensatz is in the polynomial hierarchy, J. Complexity12 (1996), 273–286. Zbl0862.68053MR1422712
- [17] A. Kresch & Y. Tschinkel, Effectivity of Brauer-Manin obstructions, Adv. Math.218 (2008), 1–27. Zbl1142.14013MR2409407
- [18] T. Krick & L. M. Pardo, A computational method for Diophantine approximation, in Algorithms in algebraic geometry and applications (Santander, 1994), Progr. Math. 143, Birkhäuser, 1996, 193–253. Zbl0878.11043MR1414452
- [19] T. Krick, L. M. Pardo & M. Sombra, Sharp estimates for the arithmetic Nullstellensatz, Duke Math. J.109 (2001), 521–598. Zbl1010.11035MR1853355
- [20] S. Lang, Fundamentals of Diophantine geometry, Springer, 1983. Zbl0528.14013MR715605
- [21] S. Lang, Algebra, third éd., Addison-Wesley Publishing Co., Inc., Reading, Mass., 1993. MR783636
- [22] P. Lelong, Mesure de Mahler et calcul de constantes universelles pour les polynômes de variables, Math. Ann.299 (1994), 673–695. Zbl0816.31006MR1286891
- [23] F. S. Macaulay, Some formulae in elimination, Proc. London Math. Soc.1 (1902), 3–27. Zbl34.0195.01MR1577000
- [24] V. Maillot, Géométrie d’Arakelov des variétés toriques et fibrés en droites intégrables, Mém. Soc. Math. France 80, 2000. Zbl0963.14009
- [25] P. Pedersen & B. Sturmfels, Product formulas for resultants and Chow forms, Math. Z.214 (1993), 377–396. Zbl0792.13006MR1245200
- [26] O. Perron, Algebra. I. Die Grundlagen, Walter de Gruyter & Co., 1951. MR38319
- [27] P. Philippon, Critères pour l’indépendance algébrique, Publ. Math. I.H.É.S. 64 (1986), 5–52. MR876159
- [28] P. Philippon, Dénominateurs dans le théorème des zéros de Hilbert, Acta Arith.58 (1991), 1–25. Zbl0679.13010MR1111087
- [29] P. Philippon, Sur des hauteurs alternatives. I, Math. Ann. 289 (1991), 255–283. MR1092175
- [30] P. Philippon, Sur des hauteurs alternatives. III, J. Math. Pures Appl. 74 (1995), 345–365. MR1341770
- [31] P. Philippon & M. Sombra, Hauteur normalisée des variétés toriques projectives, J. Inst. Math. Jussieu7 (2008), 327–373. MR2400725
- [32] G. Rémond, Élimination multihomogène, in Introduction to algebraic independence theory, Lecture Notes in Math. 1752, Springer, 2001, 53–81.
- [33] G. Rémond, Géométrie diophantienne multiprojective, in Introduction to algebraic independence theory, Lecture Notes in Math. 1752, Springer, 2001, 95–131.
- [34] G. Rémond, Nombre de points rationnels des courbes, Proc. Lond. Math. Soc.101 (2010), 759–794. Zbl1210.11073MR2734960
- [35] F. Smietanski, A parametrized Nullstellensatz, in Computational algebraic geometry (Nice, 1992), Progr. Math. 109, Birkhäuser, 1993, 287–300. MR1230873
- [36] C. J. Smyth, A Kronecker-type theorem for complex polynomials in several variables, Canad. Math. Bull.24 (1981), 447–452. Zbl0475.12002MR644534
- [37] M. Sombra, The height of the mixed sparse resultant, Amer. J. Math.126 (2004), 1253–1260. Zbl1070.11010MR2102395
- [38] B. Teissier, Résultats récents d’algèbre commutative effective, Séminaire Bourbaki, vol. 1989/90, exposé no 718, Astérisque 189-190 (1990), 107–131. MR1099873