Heights of varieties in multiprojective spaces and arithmetic Nullstellensätze
Carlos D’Andrea; Teresa Krick; Martín Sombra
Annales scientifiques de l'École Normale Supérieure (2013)
- Volume: 46, Issue: 4, page 549-627
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topD’Andrea, Carlos, Krick, Teresa, and Sombra, Martín. "Heights of varieties in multiprojective spaces and arithmetic Nullstellensätze." Annales scientifiques de l'École Normale Supérieure 46.4 (2013): 549-627. <http://eudml.org/doc/272167>.
@article{D2013,
abstract = {We present bounds for the degree and the height of the polynomials arising in some problems in effective algebraic geometry including the implicitization of rational maps and the effective Nullstellensatz over a variety. Our treatment is based on arithmetic intersection theory in products of projective spaces and extends to the arithmetic setting constructions and results due to Jelonek. A key role is played by the notion of canonical mixed height of a multiprojective variety. We study this notion from the point of view of resultant theory and establish some of its basic properties, including its behavior with respect to intersections, projections and products. We obtain analogous results for the function field case, including a parametric Nullstellensatz.},
author = {D’Andrea, Carlos, Krick, Teresa, Sombra, Martín},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {multiprojective spaces; mixed heights; resultants; implicitization; arithmetic nullstellensatz},
language = {eng},
number = {4},
pages = {549-627},
publisher = {Société mathématique de France},
title = {Heights of varieties in multiprojective spaces and arithmetic Nullstellensätze},
url = {http://eudml.org/doc/272167},
volume = {46},
year = {2013},
}
TY - JOUR
AU - D’Andrea, Carlos
AU - Krick, Teresa
AU - Sombra, Martín
TI - Heights of varieties in multiprojective spaces and arithmetic Nullstellensätze
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2013
PB - Société mathématique de France
VL - 46
IS - 4
SP - 549
EP - 627
AB - We present bounds for the degree and the height of the polynomials arising in some problems in effective algebraic geometry including the implicitization of rational maps and the effective Nullstellensatz over a variety. Our treatment is based on arithmetic intersection theory in products of projective spaces and extends to the arithmetic setting constructions and results due to Jelonek. A key role is played by the notion of canonical mixed height of a multiprojective variety. We study this notion from the point of view of resultant theory and establish some of its basic properties, including its behavior with respect to intersections, projections and products. We obtain analogous results for the function field case, including a parametric Nullstellensatz.
LA - eng
KW - multiprojective spaces; mixed heights; resultants; implicitization; arithmetic nullstellensatz
UR - http://eudml.org/doc/272167
ER -
References
top- [1] M. Aschenbrenner, Ideal membership in polynomial rings over the integers, J. Amer. Math. Soc.17 (2004), 407–441. Zbl1099.13045MR2051617
- [2] C. A. Berenstein & A. Yger, Effective Bézout identities in , Acta Math.166 (1991), 69–120. MR1088983
- [3] Y. F. Bilu & M. Strambi, Quantitative Riemann existence theorem over a number field, Acta Arith.145 (2010), 319–339. Zbl1222.11082MR2738151
- [4] E. Bombieri, J. Bourgain & S. V. Konyagin, Roots of polynomials in subgroups of and applications to congruences, Int. Math. Res. Not.2009 (2009), 802–834. Zbl1213.11058MR2482126
- [5] W. D. Brownawell, Bounds for the degrees in the Nullstellensatz, Ann. of Math.126 (1987), 577–591. Zbl0641.14001MR916719
- [6] W. D. Brownawell, The Hilbert Nullstellensatz, inequalities for polynomials, and algebraic independence, in Introduction to algebraic independence theory, Lecture Notes in Math. 1752, Springer, 2001, 239–248. MR1837838
- [7] J. I. Burgos Gil, P. Philippon & M. Sombra, Arithmetic geometry of toric varieties. Metrics, measures and heights, preprint arXiv:1105.5584. Zbl1311.14050
- [8] W.-L. Chow & B. L. van der Waerden, Zur algebraischen Geometrie. IX, Math. Ann. 113 (1937), 692–704. Zbl0016.04004MR1513117
- [9] X. Dahan, A. Kadri & É. Schost, Bit-size estimates for triangular sets in positive dimension, J. Complexity28 (2012), 109–135. Zbl1246.13039MR2871788
- [10] S. David & P. Philippon, Minorations des hauteurs normalisées des sous-variétés des tores, Ann. Scuola Norm. Sup. Pisa Cl. Sci.28 (1999), 489–543. MR1736526
- [11] W. Fulton, Intersection theory, Ergebn. Math. Grenzg. 2, Springer, 1984. Zbl0541.14005MR732620
- [12] I. M. Gelʼfand, M. M. Kapranov & A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkhäuser, 1994. Zbl0827.14036
- [13] R. Hartshorne, Algebraic geometry, Graduate Texts in Math. 52, Springer, 1977. MR463157
- [14] Z. Jelonek, On the effective Nullstellensatz, Invent. Math.162 (2005), 1–17. MR2198324
- [15] J.-P. Jouanolou, Théorèmes de Bertini et applications, Progress in Math. 42, Birkhäuser, 1983. MR725671
- [16] P. Koiran, Hilbert’s Nullstellensatz is in the polynomial hierarchy, J. Complexity12 (1996), 273–286. Zbl0862.68053MR1422712
- [17] A. Kresch & Y. Tschinkel, Effectivity of Brauer-Manin obstructions, Adv. Math.218 (2008), 1–27. Zbl1142.14013MR2409407
- [18] T. Krick & L. M. Pardo, A computational method for Diophantine approximation, in Algorithms in algebraic geometry and applications (Santander, 1994), Progr. Math. 143, Birkhäuser, 1996, 193–253. Zbl0878.11043MR1414452
- [19] T. Krick, L. M. Pardo & M. Sombra, Sharp estimates for the arithmetic Nullstellensatz, Duke Math. J.109 (2001), 521–598. Zbl1010.11035MR1853355
- [20] S. Lang, Fundamentals of Diophantine geometry, Springer, 1983. Zbl0528.14013MR715605
- [21] S. Lang, Algebra, third éd., Addison-Wesley Publishing Co., Inc., Reading, Mass., 1993. MR783636
- [22] P. Lelong, Mesure de Mahler et calcul de constantes universelles pour les polynômes de variables, Math. Ann.299 (1994), 673–695. Zbl0816.31006MR1286891
- [23] F. S. Macaulay, Some formulae in elimination, Proc. London Math. Soc.1 (1902), 3–27. Zbl34.0195.01MR1577000
- [24] V. Maillot, Géométrie d’Arakelov des variétés toriques et fibrés en droites intégrables, Mém. Soc. Math. France 80, 2000. Zbl0963.14009
- [25] P. Pedersen & B. Sturmfels, Product formulas for resultants and Chow forms, Math. Z.214 (1993), 377–396. Zbl0792.13006MR1245200
- [26] O. Perron, Algebra. I. Die Grundlagen, Walter de Gruyter & Co., 1951. MR38319
- [27] P. Philippon, Critères pour l’indépendance algébrique, Publ. Math. I.H.É.S. 64 (1986), 5–52. MR876159
- [28] P. Philippon, Dénominateurs dans le théorème des zéros de Hilbert, Acta Arith.58 (1991), 1–25. Zbl0679.13010MR1111087
- [29] P. Philippon, Sur des hauteurs alternatives. I, Math. Ann. 289 (1991), 255–283. MR1092175
- [30] P. Philippon, Sur des hauteurs alternatives. III, J. Math. Pures Appl. 74 (1995), 345–365. MR1341770
- [31] P. Philippon & M. Sombra, Hauteur normalisée des variétés toriques projectives, J. Inst. Math. Jussieu7 (2008), 327–373. MR2400725
- [32] G. Rémond, Élimination multihomogène, in Introduction to algebraic independence theory, Lecture Notes in Math. 1752, Springer, 2001, 53–81.
- [33] G. Rémond, Géométrie diophantienne multiprojective, in Introduction to algebraic independence theory, Lecture Notes in Math. 1752, Springer, 2001, 95–131.
- [34] G. Rémond, Nombre de points rationnels des courbes, Proc. Lond. Math. Soc.101 (2010), 759–794. Zbl1210.11073MR2734960
- [35] F. Smietanski, A parametrized Nullstellensatz, in Computational algebraic geometry (Nice, 1992), Progr. Math. 109, Birkhäuser, 1993, 287–300. MR1230873
- [36] C. J. Smyth, A Kronecker-type theorem for complex polynomials in several variables, Canad. Math. Bull.24 (1981), 447–452. Zbl0475.12002MR644534
- [37] M. Sombra, The height of the mixed sparse resultant, Amer. J. Math.126 (2004), 1253–1260. Zbl1070.11010MR2102395
- [38] B. Teissier, Résultats récents d’algèbre commutative effective, Séminaire Bourbaki, vol. 1989/90, exposé no 718, Astérisque 189-190 (1990), 107–131. MR1099873
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.