The membership problem for polynomial ideals in terms of residue currents
- [1] Chalmers University of Technology and the University of Göteborg Department of Mathematics 412 96 Göteborg (Sweden)
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 1, page 101-119
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topAndersson, Mats. "The membership problem for polynomial ideals in terms of residue currents." Annales de l’institut Fourier 56.1 (2006): 101-119. <http://eudml.org/doc/10135>.
@article{Andersson2006,
abstract = {We find a relation between the vanishing of a globally defined residue current on $\mathbb\{P\}^n$ and solution of the membership problem with control of the polynomial degrees. Several classical results appear as special cases, such as Max Nöther’s theorem, for which we also obtain a generalization. Furthermore there are some connections to effective versions of the Nullstellensatz. We also provide explicit integral representations of the solutions.},
affiliation = {Chalmers University of Technology and the University of Göteborg Department of Mathematics 412 96 Göteborg (Sweden)},
author = {Andersson, Mats},
journal = {Annales de l’institut Fourier},
keywords = {membership problem; polynomial ideal; residue current; integral representation; integral representations},
language = {eng},
number = {1},
pages = {101-119},
publisher = {Association des Annales de l’institut Fourier},
title = {The membership problem for polynomial ideals in terms of residue currents},
url = {http://eudml.org/doc/10135},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Andersson, Mats
TI - The membership problem for polynomial ideals in terms of residue currents
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 1
SP - 101
EP - 119
AB - We find a relation between the vanishing of a globally defined residue current on $\mathbb{P}^n$ and solution of the membership problem with control of the polynomial degrees. Several classical results appear as special cases, such as Max Nöther’s theorem, for which we also obtain a generalization. Furthermore there are some connections to effective versions of the Nullstellensatz. We also provide explicit integral representations of the solutions.
LA - eng
KW - membership problem; polynomial ideal; residue current; integral representation; integral representations
UR - http://eudml.org/doc/10135
ER -
References
top- M. Andersson, Integral representation with weights I, Math. Ann. 326 (2003), 1-18 Zbl1024.32005MR1981609
- M. Andersson, Ideals of smooth functions and residue currents, J. Funtional Anal. 212 (2004), 76-88 Zbl1056.32006MR2065238
- M. Andersson, Residue currents and ideals of holomorphic functions, Bull. Sci. Math. 128 (2004), 481-512 Zbl1086.32005MR2074610
- C. Berenstein, R. Gay, A. Vidras, A. Yger, Residue Currents and Bézout Identities, (1993), Birkhäuser Zbl0802.32001MR1249478
- C. Berenstein, B. A. Taylor, Interpolation problems in with applications to harmonic analysis, J. Analyse Math. 38 (1980), 188-254 Zbl0464.42003MR600786
- C. Berenstein, A. Yger, Effective Bézout Identities in , Acta Mathematica 166 (1991), 69-120 Zbl0724.32002MR1088983
- C. Berenstein, A. Yger, Analytic residue theory in the non-complete intersection case, J. Reine Angew. Math. 527 (2000), 203-235 Zbl0960.32004MR1794023
- B. Berndtsson, A formula for division and interpolation, Math. Ann. 263 (1983), 113-160 Zbl0499.32013MR707239
- B. Berndtsson, Integral formulas on projective space and the Radon transform of Gindikin-Henkin-Polyakov, Publ. Mat. 32 (1988), 7-41 Zbl0659.32008MR939766
- B. Berndtsson, M. Andersson, Henkin-Ramirez formulas with weights, Ann. Inst. Fourier 32 (1982), 91-110 Zbl0466.32001MR688022
- J. Briançon, H. Skoda, Sur la clôture intégrale d’un idéal de germes de fonctions holomorphes en un point de , C. R. Acad. Sci. Paris Sér. A 278 (1974), 949-951 Zbl0307.32007MR340642
- W. D. Brownawell, Bounds for the degrees in Nullstellensatz, Ann. of Math. 126 (1987), 577-592 Zbl0641.14001MR916719
- W. D. Brownawell, A pure prime product version of the Hilbert Nullstellensatz, Mich. Math. J. 45 (1998), 581-597 Zbl0964.14002MR1653279
- J-P Demailly, Complex Analytic and Differential Geometry, (1997), monograph, Grenoble
- A. Dickenstein, C. Sessa, Canonical representatives in moderate cohomology, Invent. Math. 80 (1985), 417-434 Zbl0556.32005MR791667
- L. Ein, R. Lazarsfeld, A geometric effective Nullstellensatz, Invent. math. 135 (1999), 427-448 Zbl0944.14003MR1705839
- A. Fabiano, A. Ploski, P. Tworzewski, Effective Nullstellensatz for strictly regular sequences, Univ. Iagel. Acta Math. 38 (2000), 163-167 Zbl1068.14509MR1812110
- P. Griffiths, J. Harris, Principles of algebraic geometry, (1978), Wiley-Interscience [John Wiley & Sons], New York Zbl0408.14001MR507725
- M. Hickel, Solution d’une conjecture de C. Berenstein-A. Yger et invariants de contact à l’infini, Ann. Inst. Fourier 51 (2001), 707-744 Zbl0991.13009MR1838463
- Z. Jelonek, On the effective Nullstellensatz, (2004) Zbl1087.14003
- J. Kollár, Sharp effective Nullstellensatz, J. American Math. Soc. 1 (1988), 963-975 Zbl0682.14001MR944576
- F.S. Macaulay, The algebraic theory of modular systems, (1916), Cambridge Univ. Press, Cambridge Zbl0802.13001MR1281612
- M. Nöther, Über einen Satz aus der Theorie der algebraischen Functionen, Math. Ann. (1873), 351-359 MR1509826
- M. Passare, Residues, currents, and their relation to ideals of holomorphic functions, Math. Scand. 62 (1988), 75-152 Zbl0633.32005MR961584
- M. Passare, A. Tsikh, A. Yger, Residue currents of the Bochner-Martinelli type, Publ. Mat. 44 (2000), 85-117 Zbl0964.32003MR1775747
- B. Shiffman, Degree bounds for the division problem in polynomial ideals, Michigan Math. J. 36 (1989), 163-171 Zbl0691.12010MR1000520
- H. Skoda, Application des techniques à la théorie des idéaux d’une algèbre de fonctions holomorphes avec poids, Ann. Sci. École Norm. Sup. 5 (1972), 545-579 Zbl0254.32017MR333246
- B. Teissier, Résultats récents d’algèbre commutative effective, Séminaire Bourbaki 1989/90 (1990) Zbl0743.13017
- A. Tsikh, Multidimensional residues and their applications, Transl. Amer. Math. Soc. 103 (1992) Zbl0758.32001MR1181199
- A. Tsikh, A. Yger, Residue currents. Complex analysis, J. Math. Sci. (N. Y.) 120 (2004), 1916-1971 Zbl1070.32003MR2085502
- A. Vidras, A. Yger, On some generalizations of Jacobi’s residue formula, Ann. Sci. École Norm. Sup. 34 (2001), 131-157 Zbl0991.32003MR1833092
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.