The membership problem for polynomial ideals in terms of residue currents

Mats Andersson[1]

  • [1] Chalmers University of Technology and the University of Göteborg Department of Mathematics 412 96 Göteborg (Sweden)

Annales de l’institut Fourier (2006)

  • Volume: 56, Issue: 1, page 101-119
  • ISSN: 0373-0956

Abstract

top
We find a relation between the vanishing of a globally defined residue current on n and solution of the membership problem with control of the polynomial degrees. Several classical results appear as special cases, such as Max Nöther’s theorem, for which we also obtain a generalization. Furthermore there are some connections to effective versions of the Nullstellensatz. We also provide explicit integral representations of the solutions.

How to cite

top

Andersson, Mats. "The membership problem for polynomial ideals in terms of residue currents." Annales de l’institut Fourier 56.1 (2006): 101-119. <http://eudml.org/doc/10135>.

@article{Andersson2006,
abstract = {We find a relation between the vanishing of a globally defined residue current on $\mathbb\{P\}^n$ and solution of the membership problem with control of the polynomial degrees. Several classical results appear as special cases, such as Max Nöther’s theorem, for which we also obtain a generalization. Furthermore there are some connections to effective versions of the Nullstellensatz. We also provide explicit integral representations of the solutions.},
affiliation = {Chalmers University of Technology and the University of Göteborg Department of Mathematics 412 96 Göteborg (Sweden)},
author = {Andersson, Mats},
journal = {Annales de l’institut Fourier},
keywords = {membership problem; polynomial ideal; residue current; integral representation; integral representations},
language = {eng},
number = {1},
pages = {101-119},
publisher = {Association des Annales de l’institut Fourier},
title = {The membership problem for polynomial ideals in terms of residue currents},
url = {http://eudml.org/doc/10135},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Andersson, Mats
TI - The membership problem for polynomial ideals in terms of residue currents
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 1
SP - 101
EP - 119
AB - We find a relation between the vanishing of a globally defined residue current on $\mathbb{P}^n$ and solution of the membership problem with control of the polynomial degrees. Several classical results appear as special cases, such as Max Nöther’s theorem, for which we also obtain a generalization. Furthermore there are some connections to effective versions of the Nullstellensatz. We also provide explicit integral representations of the solutions.
LA - eng
KW - membership problem; polynomial ideal; residue current; integral representation; integral representations
UR - http://eudml.org/doc/10135
ER -

References

top
  1. M. Andersson, Integral representation with weights I, Math. Ann. 326 (2003), 1-18 Zbl1024.32005MR1981609
  2. M. Andersson, Ideals of smooth functions and residue currents, J. Funtional Anal. 212 (2004), 76-88 Zbl1056.32006MR2065238
  3. M. Andersson, Residue currents and ideals of holomorphic functions, Bull. Sci. Math. 128 (2004), 481-512 Zbl1086.32005MR2074610
  4. C. Berenstein, R. Gay, A. Vidras, A. Yger, Residue Currents and Bézout Identities, (1993), Birkhäuser Zbl0802.32001MR1249478
  5. C. Berenstein, B. A. Taylor, Interpolation problems in n with applications to harmonic analysis, J. Analyse Math. 38 (1980), 188-254 Zbl0464.42003MR600786
  6. C. Berenstein, A. Yger, Effective Bézout Identities in 𝒬 [ z 1 , ... , z n ] , Acta Mathematica 166 (1991), 69-120 Zbl0724.32002MR1088983
  7. C. Berenstein, A. Yger, Analytic residue theory in the non-complete intersection case, J. Reine Angew. Math. 527 (2000), 203-235 Zbl0960.32004MR1794023
  8. B. Berndtsson, A formula for division and interpolation, Math. Ann. 263 (1983), 113-160 Zbl0499.32013MR707239
  9. B. Berndtsson, Integral formulas on projective space and the Radon transform of Gindikin-Henkin-Polyakov, Publ. Mat. 32 (1988), 7-41 Zbl0659.32008MR939766
  10. B. Berndtsson, M. Andersson, Henkin-Ramirez formulas with weights, Ann. Inst. Fourier 32 (1982), 91-110 Zbl0466.32001MR688022
  11. J. Briançon, H. Skoda, Sur la clôture intégrale d’un idéal de germes de fonctions holomorphes en un point de n , C. R. Acad. Sci. Paris Sér. A 278 (1974), 949-951 Zbl0307.32007MR340642
  12. W. D. Brownawell, Bounds for the degrees in Nullstellensatz, Ann. of Math. 126 (1987), 577-592 Zbl0641.14001MR916719
  13. W. D. Brownawell, A pure prime product version of the Hilbert Nullstellensatz, Mich. Math. J. 45 (1998), 581-597 Zbl0964.14002MR1653279
  14. J-P Demailly, Complex Analytic and Differential Geometry, (1997), monograph, Grenoble 
  15. A. Dickenstein, C. Sessa, Canonical representatives in moderate cohomology, Invent. Math. 80 (1985), 417-434 Zbl0556.32005MR791667
  16. L. Ein, R. Lazarsfeld, A geometric effective Nullstellensatz, Invent. math. 135 (1999), 427-448 Zbl0944.14003MR1705839
  17. A. Fabiano, A. Ploski, P. Tworzewski, Effective Nullstellensatz for strictly regular sequences, Univ. Iagel. Acta Math. 38 (2000), 163-167 Zbl1068.14509MR1812110
  18. P. Griffiths, J. Harris, Principles of algebraic geometry, (1978), Wiley-Interscience [John Wiley & Sons], New York Zbl0408.14001MR507725
  19. M. Hickel, Solution d’une conjecture de C. Berenstein-A. Yger et invariants de contact à l’infini, Ann. Inst. Fourier 51 (2001), 707-744 Zbl0991.13009MR1838463
  20. Z. Jelonek, On the effective Nullstellensatz, (2004) Zbl1087.14003
  21. J. Kollár, Sharp effective Nullstellensatz, J. American Math. Soc. 1 (1988), 963-975 Zbl0682.14001MR944576
  22. F.S. Macaulay, The algebraic theory of modular systems, (1916), Cambridge Univ. Press, Cambridge Zbl0802.13001MR1281612
  23. M. Nöther, Über einen Satz aus der Theorie der algebraischen Functionen, Math. Ann. (1873), 351-359 MR1509826
  24. M. Passare, Residues, currents, and their relation to ideals of holomorphic functions, Math. Scand. 62 (1988), 75-152 Zbl0633.32005MR961584
  25. M. Passare, A. Tsikh, A. Yger, Residue currents of the Bochner-Martinelli type, Publ. Mat. 44 (2000), 85-117 Zbl0964.32003MR1775747
  26. B. Shiffman, Degree bounds for the division problem in polynomial ideals, Michigan Math. J. 36 (1989), 163-171 Zbl0691.12010MR1000520
  27. H. Skoda, Application des techniques L 2 à la théorie des idéaux d’une algèbre de fonctions holomorphes avec poids, Ann. Sci. École Norm. Sup. 5 (1972), 545-579 Zbl0254.32017MR333246
  28. B. Teissier, Résultats récents d’algèbre commutative effective, Séminaire Bourbaki 1989/90 (1990) Zbl0743.13017
  29. A. Tsikh, Multidimensional residues and their applications, Transl. Amer. Math. Soc. 103 (1992) Zbl0758.32001MR1181199
  30. A. Tsikh, A. Yger, Residue currents. Complex analysis, J. Math. Sci. (N. Y.) 120 (2004), 1916-1971 Zbl1070.32003MR2085502
  31. A. Vidras, A. Yger, On some generalizations of Jacobi’s residue formula, Ann. Sci. École Norm. Sup. 34 (2001), 131-157 Zbl0991.32003MR1833092

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.