Approche de la conjecture de Novikov par la cohomologie cyclique
Séminaire Bourbaki (1990-1991)
- Volume: 33, page 299-320
- ISSN: 0303-1179
Access Full Article
topHow to cite
topSkandalis, Georges. "Approche de la conjecture de Novikov par la cohomologie cyclique." Séminaire Bourbaki 33 (1990-1991): 299-320. <http://eudml.org/doc/110141>.
@article{Skandalis1990-1991,
author = {Skandalis, Georges},
journal = {Séminaire Bourbaki},
keywords = {Novikov conjecture; higher signatures; higher indices; almost flat bundles},
language = {fre},
pages = {299-320},
publisher = {Société Mathématique de France},
title = {Approche de la conjecture de Novikov par la cohomologie cyclique},
url = {http://eudml.org/doc/110141},
volume = {33},
year = {1990-1991},
}
TY - JOUR
AU - Skandalis, Georges
TI - Approche de la conjecture de Novikov par la cohomologie cyclique
JO - Séminaire Bourbaki
PY - 1990-1991
PB - Société Mathématique de France
VL - 33
SP - 299
EP - 320
LA - fre
KW - Novikov conjecture; higher signatures; higher indices; almost flat bundles
UR - http://eudml.org/doc/110141
ER -
References
top- [1] M.F. Atiyah - Elliptic operators discrete groups and von Neumann algebras, Astérisque32-33 (1976), 43-72. Zbl0323.58015MR420729
- [2] P. Baum and A. Connes - Geometric K -theory for Lie groups and foliations, preprint I.H.E.S. (1982). MR1769535
- [3] P. Baum and A. Connes - Leafwise homotopy equivalence and rational Pontrjagin classes. in Foliations, Advanced Studies in Pure Mathematics5 (1985), 1-14. Zbl0641.57008MR877325
- [4] M. Bökstedt, W.C. Hsiang et I. Madsen - En préparation. Voir l'exposé de BÖKSTEDT au Congrès (ICM) de Kyoto (1990).
- [5] J.-B. Bost - K -théorie des produits croisés et principe d'Oka, C.R.A.S.Paris301, Ser. I (1985), n° 5, 189-192. Zbl0588.46041MR801959
- [6] D. Burghelea - The cyclic homology of groups, Comment. Math. Helvetici60 (1985), 354-365. Zbl0595.16022MR814144
- [7] S.E. Cappell - On homotopy invariance of higher signatures, Invent. Math.33 (1976), 171-179. Zbl0335.57007MR438349
- [8] P. Cartier - Homologie cyclique : Rapport sur des travaux récents de Connes, Karoubi, Loday, Quillen, ..., Sém. Bourbaki, Février 1984, exposé n° 621, Astérisque121-122 (1985), 123-146. Zbl0556.18006MR768957
- [9] A. Connes - Non commutative differential geometry. Chapter I : The Chern character in K-homology. Chapter II : De Rham homology and non commutative algebra, Publ. Math. I.H.E.S.62 (1986), 257-360. Zbl0592.46056MR823176
- [10] A. Connes - Cyclic cohomology and the transverse fundamental class of a foliation, in Geometric methods in operator algebras. H. Araki and E.G. Effros éd., Pitnam Research Notes in Math. Series 123, Longman Wiley (1986), 52-144. Zbl0647.46054MR866491
- [11] A. Connes - Entire cyclic cohomology of Banach algebras and the character of θ-summable Fredholm modules, K-theory1 (1988), 519- 548. Zbl0657.46049
- [12] A. Connes, M. Gromov et H. Moscovici - Conjecture de Novikov et fibrés presque plats, C.R.A.S.Paris310 Ser. I (1990), 273-277. Zbl0693.53007MR1042862
- [13] A. Connes and H. Moscovici - Cyclic cohomology, the Novikov Zbl0759.58047
- conjecture and fundamental groups, Topology29 (1990), 345-388. Zbl0759.58047MR1066176
- [14] T. Fack - K-théorie bivariante de Kasparov, Sém. Bourbaki Février 1983, exposé n° 605, Astérisque105-106 (1983), 149-166. Zbl0542.46039MR728986
- [15] F.T. Farrell et W.C. Hsiang - On Novikov's conjecture for nonpositively curved manifolds. I, Ann. Math.113 (1981), 199-209. Zbl0461.57016MR604047
- [16] B.L. Feigin et B.L. Tsygan - Additive K-theory Zbl0635.18008
- [17] E. Getzler - Pseudodifferential operators on supermanifolds and the Atiyah-Singer index theorem, Comm. Math. Phys.92 (1983), 163-176. Zbl0543.58026MR728863
- [18] É. Ghys - L'invariant de Godbillon-Vey, Sém. Bourbaki, mars 1989, Exposé n° 706, Astérisque177-178 (1989), 155-182. Zbl0707.57015MR1040572
- [19] É. Ghys - Les groupes hyperboliques, Sém. Bourbaki Mars 1990, exposé n° 722, à paraître dans Astérisque189-190. Zbl0744.20036MR1099877
- [20] M. Gromov - Hyperbolic groups, in Essays in group theory. M.S.R.I. Publ.8 (1987), 75-263. Zbl0634.20015MR919829
- [21] M. Gromov et H.B. Lawson - Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Publ. Math. I.H.E.S.58 (1983), 83-196. Zbl0538.53047MR720933
- [22] P. de la Harpe - Groupes hyperboliques, algèbres d'opérateurs et un théorème de Jolissaint, C.R.A.S.Paris307 Ser. I (1988), 771-774. Zbl0653.46059MR972078
- [23] M. Hilsum et G. Skandalis - Invariance par homotopie de la signature à coefficients dans un fibré presque plat (d'après Connes-Gromov-Moscovici), à paraître dans J. für Crelle und Ang. Math. Zbl0731.55013
- [24] F. Hirzebruch - Topological methods in algebraic geometry, Berlin-Heidelberg-New York, Springer (1965). Zbl0138.42001MR1335917
- [25] W.C. Hsiang, H.D. Rees - Miscenko's work on Novikov's conjecture, Contemp. Math.72 (1982), 77-98. Zbl0512.57007MR658509
- [26] P. Jolissaint - K -groups of reduced C*-algebras and rapidly decreasing functions on groups, K-theory2 (1989), 723-735. Zbl0692.46062MR1010979
- [27] J. Kaminker and J.G. Miller - Homotopy invariance of the analytic signature operators over C*-algebras, J. Operator Theory14 (1985), 113-127. Zbl0614.46062MR789380
- [28] M. Karoubi - K-theory, an introduction, Grund. des Mat. Wis., Springer-Verlag (1978). Zbl0382.55002MR488029
- [29] G.G. Kasparov - Topological invariants of elliptic operators I : K-homology, Izv. Akad. Nauk. S.S.S.R. Ser. Mat.39 (1975), 796-838 ; English transl. in Math. U.S.S.R. Izv.9 (1975), 751-792. Zbl0337.58006MR488027
- [30] G.G. Kasparov - Equivariant KK-theory and the Novikov conjecture, Inv. Math.91 (1988), 147-201 ; (cf. aussi : K-theory, group C* -algebras and higher signatures, Conspectus Parts 1 and 2, preprint Chernogolovka (1981). Zbl0647.46053MR918241
- [31] G.G. Kasparov - Operator K-theory and its applications : elliptic operators, group representations, higher signatures, C*-extensions, in Proc. I.C.M. conf. Warsaw1983, PWN Elsevier (1984), 987-1000. Zbl0571.46047MR804752
- [32] G.G. Kasparov and G. Skandalis - Groups acting on buildings, Operator K-theory and Novikov's conjecture, K-theory4 (1991), 303- 337. Zbl0738.46035MR1115824
- [33] G. Lusztig - Novikov's higher signature and families of elliptic operators, J. of Diff. Geometry7 (1971), 229-256. Zbl0265.57009MR322889
- [34] A.S. Mishchenko - Homotopy invariance of non simply connected manifolds, I : Rational invariance, Math. U.S.S.R. Izv.4 (1970), 509- 519, traduit de Izv. Akad. Nauk. S.S.S.R. Ser. Math.34 (1970), 501-514. Zbl0216.19701MR341495
- [35] A.S. Mishchenko - Infinite dimensional representations of discrete groups and higher signatures, Izv. Akad. S.S.S.R. Ser. Mat.38 (1974), 81-106. Zbl0292.57017MR362407
- [36] A.S. Mishchenko - C* -algebras and K -theory, Springer Lect. Notes in Math. vol. 763 (1979), 262-274. Zbl0444.57014MR561226
- [37] A.S. Mishchenko and Yu.P. Solov'jev - Représentations of Banach algebras and Hirzebruch type formulae, Mat. Sbornic111 (1980), 209-226. Zbl0433.55002MR564349
- [38] H. Moscovici - Cyclic cohomology and invariants o f non-simply connected manifolds, Proc. I.C.M. Kyoto (1990), à paraître. Zbl0745.57009
- [39] S.P. Novikov - Analogues hermitiens de la K-théorie, Actes, Congrès Intern. Math.2 (1970), 39-45. Zbl0228.18003MR431215
- [40] M. Pimsner - KK-groups of crossed products by groups acting on trees, Inv. Math.86 (1986), 603-634. Zbl0638.46049MR860685
- [41] H.D. Rees - Special manifolds and Novikov's conjecture, Topology22(1983), 365-378. Zbl0521.57021MR710110
- [42] J. Rosenberg - C*-algebras, positive scalar curvature and the Novikov conjecture, Publ. Math. I.H.E.S.58 (1983), 409-424. Zbl0526.53044MR720934
- [43] Yu.P. Solov'ev - Uspekhi Matem. Nauk.31 n° 1 (1976), 261-262. Zbl0335.57020
- [44] Yu.P. Solov'ev - Thèse. Université de Moscou (1976).
- [45] S. Weinberger - Aspects of the Novikov conjecture, Contemp. Math.105 (1990), 281-297. Zbl0705.57013MR1047285
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.