Progrès récents sur la conjecture de Baum-Connes. Contribution de Vincent Lafforgue

Georges Skandalis

Séminaire Bourbaki (1999-2000)

  • Volume: 42, page 105-135
  • ISSN: 0303-1179

How to cite

top

Skandalis, Georges. "Progrès récents sur la conjecture de Baum-Connes. Contribution de Vincent Lafforgue." Séminaire Bourbaki 42 (1999-2000): 105-135. <http://eudml.org/doc/110271>.

@article{Skandalis1999-2000,
author = {Skandalis, Georges},
journal = {Séminaire Bourbaki},
keywords = {Baum-Connes conjecture; -theory and operator algebras; lattices in Lie groups; Kazhdan property ; -algebras},
language = {fre},
pages = {105-135},
publisher = {Société Mathématique de France},
title = {Progrès récents sur la conjecture de Baum-Connes. Contribution de Vincent Lafforgue},
url = {http://eudml.org/doc/110271},
volume = {42},
year = {1999-2000},
}

TY - JOUR
AU - Skandalis, Georges
TI - Progrès récents sur la conjecture de Baum-Connes. Contribution de Vincent Lafforgue
JO - Séminaire Bourbaki
PY - 1999-2000
PB - Société Mathématique de France
VL - 42
SP - 105
EP - 135
LA - fre
KW - Baum-Connes conjecture; -theory and operator algebras; lattices in Lie groups; Kazhdan property ; -algebras
UR - http://eudml.org/doc/110271
ER -

References

top
  1. [1] C. Anantharaman-Delaroche - Classification des C*-algèbres purement infinies nucléaires (d'après E. Kirchberg), Sém. Bourbaki1995/96, exp. n° 805, Astérisque241 (1997), 7-27. Zbl0961.46040MR1472533
  2. [2] C. Anantharaman-Delaroche et J. RenaultAmenable groupoids (preprint 1999), à paraître à Ens. Math. Zbl0960.43003MR1799683
  3. [3] M.F. Atiyah - Elliptic operators discrete groups and von Neumann algebras, Astérisque32-33 (1976), 43-72. Zbl0323.58015MR420729
  4. [4] P. Baum and A. Connes - K-theory for Lie groups and foliations (preprint 1982), à paraître à Ens. Math. 
  5. [5] P. Baum, A. Connes and N. Higson - Classifying space for proper actions and K-theory of group C*-algebras, Contemporary Math.167 (1994), 241-291. Zbl0830.46061MR1292018
  6. [6] P. Baum, N. Higson and R. P Lymen - A proof of the Baum-Connes conjecture for p-adic GL(n), C. R. Acad. Sci. Paris, Sér. I Math.325, n° 2 (1997), 171-176. Zbl0918.46061MR1467072
  7. [7] J.-B. Bost - Principe d'Oka, K-théorie et systèmes dynamiques non commutatifs, Inv. Math.101 (1990), 261-333. Zbl0719.46038MR1062964
  8. [8] J. Chabert - Stabilité de la conjecture de Baum-Connes pour certains produits semi-directs de groupes, C. R. Acad. Sci. Paris, Sér. I Math.328, n° 12 (1999), 1129-1132. Zbl0971.46045MR1701372
  9. [9] A. Connes - Sur la théorie non commutative de l'intégration, Lect. Notes in Math.725 (1979), 19-143. Zbl0412.46053MR548112
  10. [10] J. Cuntz - K-theoretic amenability for discrete groups, J. Reine ang. Math.344 (1983), 180-195. Zbl0511.46066MR716254
  11. [11] J. Cuntz - Bivariante K-theorie für lokalconvexe Algebren und der Chern-Connes Character, Doc. Math.2 (1997), 139-182. Zbl0920.19004MR1456322
  12. [12] C. Delaroche et A.A. Kirillov - Sur les relations entre l'espace dual d'un groupe et la structure de ses sous-groupes fermés (d'après D. A. Kazhdan), Sém. Bourbaki1967/68, exp. n 343, Soc. Math. France10 (1995), 507-528. Zbl0214.04602MR1610473
  13. [13] T. Fack - K-théorie bivariante de Kasparov, Sém. Bourbaki1982/83, Astérisque105-106, (1983), 149-166. Zbl0542.46039MR728986
  14. [14] M. Gromov - Geometric reflections on the Novikov conjecture, Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993), London Math. Soc. Lecture Note Ser.226Cambridge Univ. Press (1995), 164-173. Zbl0966.53028MR1388301
  15. [15] M. Gromov - Spaces and questions (1999). MR1826251
  16. [16] U. Haagerup - An example of a nonnuclear C*-algebra which has the metric approximation property, Inv. Math.50 (1979), 279-293. Zbl0408.46046MR520930
  17. [17] P. de la Harpe - Groupes hyperboliques, algèbres d'opérateurs et un théorème de Jolissaint, C. R. Acad. Sci. Paris, Sér. I Math.307 (1988), 771-774. Zbl0653.46059MR972078
  18. [18] N. Higson - Bivariant K-theory and the Novikov conjecture (1999). Zbl0962.46052MR1779613
  19. [19] N. Higson and G. Kasparov - Operator K-theory for groups which act properly and isometrically on Hilbert space, Electronic Research Anouncements, AMS3 (1997), 131-141. Zbl0888.46046MR1487204
  20. [20] N. Higson, V. Lafforgue and G. Skandalis - Counterexamples to the Baum-Connes Conjectures, en préparation. Zbl1014.46043
  21. [21] N. Higson and J. Roe - Amenable group actions and the Novikov conjecture (1999). Zbl0964.55015MR1739727
  22. [22] P. Jolissaint - Rapidly decreasing functions in reduced C*-algebras of groups, Trans. Amer. Math. Soc.317 (1990), 167-196. Zbl0711.46054MR943303
  23. [23] P. Jolissaint - K-theory of reduced C*-algebras and rapidly decreasing functions on groups, K-theory2 (1989), 723-735. Zbl0692.46062MR1010979
  24. [24] P. Julg - Remarks on the Baum-Connes conjecture and Kaszdan's property T, Fields Inst. Comm.13 (1997), 145-153. Zbl0884.19006MR1424959
  25. [25] P. Julg - Travaux de N. Higson et G. Kasparov sur la conjecture de Baum-Connes, Sém. Bourbaki, vol. 1997/98, exp. n 841, Astérisque252 (1998), 151- 183. Zbl0937.46063MR1685573
  26. [26] P. Julg et A. Valette - Fredholm modules associated to Bruhat-Tits Buildings, Proc. of the Center for Math. Analysis, Australian National University16 (1988), 143-155. Zbl0673.46047MR953990
  27. [27] G.G. Kasparov - Hilbert C*-modules : theorems of Stinespring and Voiculescu, J. Operator Theory4 (1980), 133-150. Zbl0456.46059MR587371
  28. [28] G.G. Kasparov - The operator K-functor and extensions of C*-algebras, Math. USSR Izv.16 (1981), n 3, 513-572. Translated from : Izv. Akad. Nauk. S.S.S.R. Ser. Mat.44 (1980), 571-636. Zbl0464.46054MR582160
  29. [29] G.G. Kasparov - Equivariant KK-theory and the Novikov conjecture, Inv. Math.91 (1988), 147-201. Zbl0647.46053MR918241
  30. [30] G.G. Kasparov and G. Skandalis - Groups acting on buidings, Operator K-theory and Novikov's conjecture, K-theory4 (1991), 303-337. Zbl0738.46035MR1115824
  31. [31] G.G. Kasparov and G. Skandalis - Groupes « boliques » et conjecture de Novikov, Note C.R.A.S.319, Sér. I (1994), 815-820. Zbl0839.19003MR1300949
  32. [32] D. Kazhdan - Connection of the dual space of a group with the structure of its closed subgroups, Funct. Anal. and its Appl.1 (1967), 63-65. Zbl0168.27602MR209390
  33. [33] V. Lafforgue - Une démonstration de la conjecture de Baum-Connes pour les groupes réductifs sur un corps p-adique et pour certains groupes discrets possédant la propriété (T), C. R. Acad. Sci. Paris, Sér. I Math.327, n° 5 (1998), 439-444. Zbl0911.46042MR1652538
  34. [34] V. Lafforgue - A proof of property (RD) for discrete cocompact subgroups of SL3(R) (preprint 1998), à paraître à Journal of Lie theory. MR1652538
  35. [35] V. Lafforgue - K-théorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes (preprint 1998). MR1914617
  36. [36] V. Lafforgue - Espaces de Schwartz (preprint 1998). 
  37. [37] V. Lafforgue - K-théorie bivariante pour les algèbres de Banach, groupoïdes et conjecture de Baum-Connes (preprint en préparation 1999). 
  38. [38] P.-Y. Le Gall - Théorie de Kasparov équivariante et groupoïdes, C. R. Acad. Sci. Paris, Sér. I Math.324, n 6 (1997), 695-698. Zbl0883.46041MR1447045
  39. [39] A.S. MiŠ Čenko - Homotopy invariance of non simply connected manifolds, I : Rational invariance, Math. USSR Izv.4 (1970), 509-519, transl from Izv. Akad. Nauk. SSSR Ser. Math.34, (1970), 501-514. Zbl0232.55015MR268898
  40. [40] H. Oyono-Oyono - La conjecture de Baum-Connes pour les groupes agissant sur les arbres, C. R. Acad. Sci. Paris, Sér. I Math.326, n° 7 (1998), 799-904. Zbl0918.46062MR1648575
  41. [41] J. Ramagge, G. Robertson and T. Steger - A Haagerup inequality for Ã1 x Ã1 and Ã2 buildings, Geometric and Funct. Anal.8, n 4 (1998), 702-731. Zbl0906.43009MR1633983
  42. [42] J.N. Renault - A groupoid approach to C*-algebras, Lecture Notes in Math.793, Springer-Verlag, New York (1980). Zbl0433.46049MR584266
  43. [43] J. Roe - Index Theory, Coarse Geometry, and Topology of Manifolds, CBMS Regional Conf. Series in Math.90, AMS (1996). Zbl0853.58003MR1399087
  44. [44] G. Skandalis - Une notion de nucléarité en K-théorie (d'après J.Cuntz). K-theory1 (1988), 549-573. Zbl0653.46065MR953916
  45. [45] G. Skandalis - Approche de la conjecture de Novikov par la cohomologie cyclique. D'après Connes-Gromov-Moscovici, Sém. Bourbaki, vol. 1990/91, exposé n° 739, Astérisque201-202-203 (1992), 299-316. Zbl0749.58056MR1157846
  46. [46] G. Skandalis, J.L. Tu and G. Yu - Coarse Baum-Connes conjecture and Groupoids (preprint 1999). Zbl1033.19003MR1905840
  47. [47] J.L. Tu - La conjecture de Novikov pour les feuilletages hyperboliques, K-theory16, n 2 (1999), 129-184. Zbl0932.19005MR1671260
  48. [48] J.L. Tu - La conjecture de Novikov pour les feuilletages moyennables, K-theory17, n 3 (1999), 215-264. Zbl0939.19001MR1703305
  49. [49] A. Valette - Questions, Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993), London Math. Soc. Lecture Note Ser.226, Cambridge Univ. Press (1995), p. 74. MR1388294
  50. [50] A. Wassermann - Une démonstration de la conjecture de Connes-Kasparov pour les groupes de Lie linéaires connexes réductifs, C. R. Acad. Sci. Paris, Sér. I Math.304 (1987), 559-562. Zbl0615.22011MR894996
  51. [51] G. Yu - The coarse Baum-Connes conjecture for spaces which admit uniform embeddings into Hilbert space (preprint 1999), à paraître à Inv. Math. Zbl0956.19004MR1344138

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.