Géométrie de la courbe brownienne plane

Gérard Ben Arous

Séminaire Bourbaki (1990-1991)

  • Volume: 33, page 7-42
  • ISSN: 0303-1179

How to cite

top

Ben Arous, Gérard. "Géométrie de la courbe brownienne plane." Séminaire Bourbaki 33 (1990-1991): 7-42. <http://eudml.org/doc/110149>.

@article{BenArous1990-1991,
author = {Ben Arous, Gérard},
journal = {Séminaire Bourbaki},
keywords = {log-scaling limits of Brownian functionals; properties of local times; self-intersections; renormalized self-intersections; Wiener sausages; geometrical properties of the planar Brownian paths},
language = {fre},
pages = {7-42},
publisher = {Société Mathématique de France},
title = {Géométrie de la courbe brownienne plane},
url = {http://eudml.org/doc/110149},
volume = {33},
year = {1990-1991},
}

TY - JOUR
AU - Ben Arous, Gérard
TI - Géométrie de la courbe brownienne plane
JO - Séminaire Bourbaki
PY - 1990-1991
PB - Société Mathématique de France
VL - 33
SP - 7
EP - 42
LA - fre
KW - log-scaling limits of Brownian functionals; properties of local times; self-intersections; renormalized self-intersections; Wiener sausages; geometrical properties of the planar Brownian paths
UR - http://eudml.org/doc/110149
ER -

References

top
  1. [AD] O. Adelman, A. Dvoretzky, Plane Brownian motion has strictly n-multiple points. Israel J. Math.52, 361-364 (1985). Zbl0603.60076MR829365
  2. [B1] K. Burdzy, Brownian paths and cones. Ann. Probab.13, 1006-1010 (1985). Zbl0574.60053MR799436
  3. [B2] K. Burdzy, Multidimensional Brownian Excursions and Potential Theory. Longman, New-York, 1987. Zbl0691.60066MR932248
  4. [B3] K. Burdzy, Geometric properties of two-dimensional Brownian paths. Probab. Th. Rel. Fields81, 485-505 (1989). Zbl0667.60078MR995807
  5. [B4] K. Burdzy, Cut points on Brownian paths. Ann. Probab.17, 1012- 1036. Zbl0691.60069MR1009442
  6. [BSM] K. Burdzy, J. SanMartin, Curvature of the convex hull of planar Brownian motion near its minimum point. Stoch. Process. Appl.33, 89-103 (1989). Zbl0696.60041MR1027110
  7. [CT] Z. Ciesielski, S.J. Taylor, First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path. Trans. Amer. Math. Soc.103, 434-450 (1963). Zbl0121.13003MR143257
  8. [CHM] M. Cranston, P. Hsu, P. March, Smoothness of the convex hull of planar Brownian motion. Ann. Probab.17, 144-150 (1989). Zbl0678.60073MR972777
  9. [Da] B. Davis, Brownian motion and analytic functions. Ann. Probab.7, 913-932 (1979). Zbl0421.60072MR548889
  10. [DV] M.D. Donsker, S.R.S. Varadhan, Asymptotics for the Wiener sausage. Comm. Pure Appl. Math.28, 525-565 (1975). Zbl0333.60077MR397901
  11. [Du1] R. Durrett, A new proof of Spitzer's result on the winding of two-dimensional Brownian motion. Ann. Probab.10, 244-246 (1982). Zbl0479.60081MR637391
  12. [Du2] R. Durett, Brownian Motion and Martingales in Analysis. Wadsworth, Belmont Ca. 1984. Zbl0554.60075
  13. [DE] A. Dvoretzky, P. Erdös, Some problems on random walk in space. Proc. Second Berkeley Symposium on Math, Statistics and Probability. 353-367. University of California Press, Berkeley, 1951. Zbl0044.14001MR47272
  14. [DK1] A. Dvoretzky, P. Erdös, S. Kakutani, Double points of paths of Brownian motion in n-space. Acta Sci. Math. (Szeged)12, 74-81 (1950). Zbl0036.09001MR34972
  15. [DK2] A. Dvoretzky, P. Erdös, S. Kakutani, Multiple points of Brownian motion in the plane. Bull. Res. Council Israel Sect. F3, 364-371 (1954). MR67402
  16. [DK3] A. Dvoretzky, P. Erdös, S. Kakutani, Points of multiplicity of plane Brownian paths. Bull. Res. Council Israel Sect. F7, 175-180 (1958). MR126298
  17. [DKT] A. Dvoretzky, P. Erdös, S. Kakutani, S.J. Taylor, Triple points of Brownian motion in 3-space. Proc. Cambridge Philos. Soc.53, 856-862 (1957). Zbl0208.44103MR94855
  18. [Dy1] E.B. Dynkin, Additive functionals of several time-reversible Markov processes. J. Funct. Anal.42, 64-101 (1981). Zbl0467.60069MR620580
  19. [Dy2] E.B. Dynkin, Local times and quantum fields, Seminar on Stochastic Processes1983, pp.69-84, Birkhäuser, Boston, 1984. Zbl0554.60058MR902412
  20. [Dy3] E.B. Dynkin, Polynomials of the occupation field and related random fields. J. Funct. Anal.42, 64-101 (1984). Zbl0467.60069MR756768
  21. [Dy4] E.B. Dynkin, Random fields associated with multiple points of the Brownian motionJ. Funct. Anal.62, 397-434 (1985). Zbl0579.60081MR794777
  22. [Dy5] E.B. Dynkin, Functionals associated with self-intersections of the Brownian motion. Séminaire de Probabilités XX, Lecture Notes in Math.1204, 553-571, Springer, Berlin, 1986. Zbl0617.60080MR942044
  23. [Dy6] E.B. Dynkin, Self-intersection gauge for random walks and for Brownian motion. Ann. Probab.16, 1-57 (1988). Zbl0638.60081MR920254
  24. [Dy7] E.B. Dynkin, Regularized self-intersection local times of the planar Brownian motion. Ann. Probab.16, 58-74 (1988). Zbl0641.60085MR920255
  25. [E] S.F. Edwards, The statistical mechanics of polymers with excluded volume. Proc. Phys. Sci.85, 613-624 (1965). Zbl0125.23205MR183442
  26. [EB] M. El Bachir, L'enveloppe convexe du mouvement brownien. Thèse de troisième cycle, Université Paul Sabatier, Toulouse, 1983. 
  27. [Ev] S.N. Evans, On the Hausdorff dimension of Brownian cone points. Math. Proc. Camb. Phil. Soc.98, 343-353 (1985). Zbl0583.60078MR795899
  28. [GHR] D. Geman, J. Horowitz, J. Rosen, A local time analysis of intersections of Brownian paths in the plane. Ann. probab.12, 86-107 (1984). Zbl0536.60046MR723731
  29. [H] J. Hawkes, Some geometric aspects of potentials theory. Stochastic Analysis and Applications. Lecture Notes in Math.1095, 130-154, Springer, New-York, 1984. Zbl0558.60055MR777518
  30. [IMK] K. Itô, H.P. McKean, Diffusion Processes and their Sample Paths.Springer, New-York, 1965. Zbl0127.09503MR199891
  31. [Kn] F.B. Knight, Essentials of Brownian Motion and Diffusion. A.M.S.Providence, 1981. Zbl0458.60002MR613983
  32. [KR] G. Kallianpur, H. Robbins, Ergodic property of the Brownian Motion process. Proc. Nat. Acad. Sci. U.S.A.39, 525-533. Zbl0053.10003MR56233
  33. [L1] J.F. Le Gall, Sur la mesure de Hausdorff de la courbe brownienne. Séminaire de Probabilités XIX. Lecture Notes in Math. 1123, 297- 313. Springer, New-York, 1985. Zbl0563.60071MR889491
  34. [L2] J.F. Le Gall, Sur le temps local d'intersection du mouvement brownien plan et la méthode de renormalisation de Varadhan. Séminaire de Probabilités XIX. Lecture Notes in Math1123, 314-331, Springer, New-York1985. Zbl0563.60072MR889492
  35. [L3] J.F. Le Gall, Sur la saucisse de Wiener et les points multiples du mouvement brownienAnn. Probab.14, 1219-1244 (1986). Zbl0621.60083MR866344
  36. [L4] J.F. Le Gall, Le comportement du mouvement brownien entre les deux instants où il passe par un point double. J. Funct. Anal.71, 246-262 (1987). Zbl0624.60090MR880979
  37. [L5] J.F. Le Gall, Mouvement brownien, cônes et processus stables. Probab. Th. Rel. Fields76, 587-627 (1987). Zbl0611.60076MR917681
  38. [L6] J.F. Le Gall, Temps locaux d'intersection et points multiples des processus de Lévy. Séminaire de probabilités XXI, Lecture Notes in Math. 1247, 341-375. Springer, New-York, 1987. Zbl0621.60077MR941994
  39. [L7] J.F. Le Gall, The exact Hausdorff measure of Brownian multiple points, Seminar on Stochastic Processes1986, pp.107-137, Birkhäuser, Boston, 1987. Zbl0619.60073MR902429
  40. [L8] J.F. Le Gall, Fluctuation results for the Wiener sausage. Ann. Probab.16, 991-1018 (1988). Zbl0665.60080MR942751
  41. [L9] J.F. le Gall, Sur une conjecture de M. Kac. Probab. Th. Rel. Fields78, 389-402 (1988). Zbl0655.60067MR949180
  42. [L10] J.F. Le Gall, Wiener sausage and self-interaction local times. J. Funct. Anal.88, 299-341 (1990). Zbl0697.60081MR1038444
  43. [L11] J.F. Le Gall, On the connected components of the complement of a two-dimensional Brownian path. To appear. Zbl0748.60073MR1146456
  44. [L12] J.F. Le Gall, Cours à l'Ecole d'été de St Flour 1990. A paraître en Lecture Notes Springer Verlag. 
  45. [LY] J.F. Le Gall, M. Yor, Etude asymptotique de certains mouvements browniens complexes avec drift. Probab. Th. Rel. Fields71, 183-229 (1986). Zbl0579.60077MR816704
  46. [LJ] Y. Le Jan, On the Fock space representation of functionals of the occupation field and their renormalization. J. Funct. Anal.80, 88-108 (1988). Zbl0671.60064MR960225
  47. [Lé1] P. Lévy, Le mouvement brownien plan. Amer. J. Math.62, 487-550 (1940). Zbl66.0619.02MR2734JFM66.0619.02
  48. [Lé2] P. Lévy, La mesure de Hausdorff de la courbe du mouvement brown- ien. Giornale de l'Istituto Italiano degli Attuari16, 1-37 (1953). Zbl0053.10101MR64344
  49. [Lé3] P. Lévy, Le caractère universel de la courbe du mouvement brownien et la loi du logarithme itéré. Rendiconti del circolo matematico di Palermo,II, 4, 337-366 (1955). Zbl0067.11201MR77799
  50. [Lé4] P. Lévy, Processus Stochastiques et Mouvement Brownien. Gauthier-Villars, Paris, 1965. Zbl0034.22603MR190953
  51. [Ma] N.G. Makarov, On the distorsion of boundary sets under conformal mappings. Proc. London Math. Soc. (3) 51, 369-384 (1985). Zbl0573.30029MR794117
  52. [M] B.B. Mandelbrot, The Fractal Geometry of Nature. W.H. Freeman and Co. New-York, 1982. Zbl0504.28001MR665254
  53. [MM] J.E. McMillan, Boundary behaviour of a conformal mapping. Acta Math.123, 43-68 (1969). Zbl0222.30006MR257330
  54. [Mo] T.S. Mountford, On the asymptotic number of small components created by planar Brownian motion. Stochastics28, 177-188 (1989). Zbl0686.60087MR1020270
  55. [PY1] J.W. Pitman, M. Yor, Asymptotic laws of planar Brownian motion. Ann. Probab.14, 733-779 (1986). Zbl0607.60070MR841582
  56. [PY2] J.W. Pitman, M. Yor, Further asymptotic laws of planar Brownian Motion. Annals of Probability1989, vol.17, N°3, 965-1011. Zbl0686.60085MR1009441
  57. [Po] G. Pommerenke, Univalent Functions. Vandenhoeck & Ruprecht, Göttingen, 1975. Zbl0298.30014MR507768
  58. [PS] S.C. Port, C.J. Stone, Brownian Motion and Classical Potential Theory. Academic Press, New-York, 1978. Zbl0413.60067MR492329
  59. [ReY] D. Revuz, M. Yor, Continuous Martingale Calculus. Springer, 1990 (to appear). 
  60. [RoW] L.C.G. Rogers, D. Williams, Diffusions, Markov Processes, and Mar- tingales, Vol.II. Wiley, Chichester, 1987. MR921238
  61. [R1] J. Rosen, A local time approach to the self-intersections of Brownian paths in space. Comm. Math. Physics.88, 327-338 (1983). Zbl0534.60070MR701921
  62. [R2] J. Rosen, Self-intersections of random fields. Ann. Probab.12, 108- 119 (1984). Zbl0536.60066MR723732
  63. [R3] J. Rosen, Tanaka formula and renormalization for intersections of planar Brownian motion. Séminaire de Probabilités XX. Lecture Notes in Math. 1204, 515-531. Springer, Berlin, 1986. Zbl0611.60065MR942041
  64. [RY] J. Rosen, M. Yor, Tanaka formulae and renormalization for triple intersections of Brownian motion in the plane. Ann. Probab. to appear. Zbl0719.60084MR1085330
  65. [Sh1] M. Shimura, A limit theorem for two-dimensional conditioned random walk. Nagoya Math. J.95, 105-116 (1984). Zbl0561.60037MR759468
  66. [Sh2] M. Shimura, Excursions in a cone for two-dimensional Brownian motion. J. Math. Kyoto Univ.25, 433-443 (1985). Zbl0582.60048MR807490
  67. [Sh3] M. Shimura, Meandering points of two-dimensional Brownian motion. Kodai Math. J.11, 169-176 (1988). Zbl0657.60102MR949126
  68. [S1] F. Spitzer, Some theorems concerning two-dimensional Brownian motion. Trans. Amer. Math. Soc.87, 187-197 (1958). Zbl0089.13601MR104296
  69. [S2] F. Spitzer, Electrostatic capacity, heat flow and Brownian motion. Z. Wahrsch. verw. Gebiete3, 110-121 (1964). Zbl0126.33505MR172343
  70. [Sz] A.S. Sznitman, Some bounds and limiting results for the Wiener sausage of small radius associated with elliptic diffusions. Stochastic Process. Appl.25, 1-25 (1987). Zbl0628.60080MR904262
  71. [Ta] L. Takacs, Expected perimeter length, Amer. Math. Monthly87- 142. 
  72. [T1] S.J. Taylor, The exact Hausdorff measure of the sample path for planar Brownian motion. Proc. Cambridge Philos. Soc.60, 253-258 (1964). Zbl0149.13104MR164380
  73. [T2] S.J. Taylor, Sample path properties of processes with stationary independent increments. Stochastic Analysis, D. Kendall, E. Harding eds. Wiley, London, 1973. MR394893
  74. [T3] S.J. Taylor, The measure theory of random fractals. Math. Proc. Camb. Phil. Soc.100, 383-406 (1986). Zbl0622.60021MR857718
  75. [V] S.R.S. Varadhan, Appendix to "Euclidean quantum field theory", by K. Symanzik. In Local Quantum Theory (R. Jost ed.). Academic, New-York, 1969. 
  76. [Wo] R. Wolpert, Wiener path intersections and local time. J. Funct. Anal.30, 329-340 (1978). Zbl0403.60069MR518339
  77. [Y1] M. Yor, Compléments aux formules de Tanaka-Rosen. Séminaire de Probabilités XIX. Lecture Notes in Math. 1123, 332-349. Springer, Berlin, 1985. Zbl0563.60073MR889493
  78. [Y2] M. Yor, Renormalisation et convergence en loi pour les temps locaux d'intersection du mouvement brownien dans R3. Séminaire de Probabilités XIX. Lecture Notes in Math. 1123, 350-365. Springer, Berlin, 1985. Zbl0569.60075MR889494
  79. [Y3] M. Yor, Précisions sur l'existence et la continuité des temps locaux d'intersection du mouvement brownien dans Rd. Séminaire de Probabilités XX. Lecture Notes in Math. 1204, 532-541. Springer, Berlin, 1986. Zbl0611.60066MR942042
  80. [Y4] M. Yor, Sur la représentation comme intégrales stochastiques des temps d'occupation du mouvement brownien dans Rd. Séminaire de Probabilités XX. Lecture Notes in Math. 1204, 543-552. Springer, Berlin, 1986. Zbl0611.60067MR942043

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.