Temps locaux d'intersection et points multiples des processus de Lévy
Séminaire de probabilités de Strasbourg (1987)
- Volume: 21, page 341-374
Access Full Article
topHow to cite
topLe Gall, Jean-François. "Temps locaux d'intersection et points multiples des processus de Lévy." Séminaire de probabilités de Strasbourg 21 (1987): 341-374. <http://eudml.org/doc/113603>.
@article{LeGall1987,
author = {Le Gall, Jean-François},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {multiple points of Lévy processes; intersection local time; tubular neighbourhoods; packing measure of multiple points of Brownian motion},
language = {eng},
pages = {341-374},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Temps locaux d'intersection et points multiples des processus de Lévy},
url = {http://eudml.org/doc/113603},
volume = {21},
year = {1987},
}
TY - JOUR
AU - Le Gall, Jean-François
TI - Temps locaux d'intersection et points multiples des processus de Lévy
JO - Séminaire de probabilités de Strasbourg
PY - 1987
PB - Springer - Lecture Notes in Mathematics
VL - 21
SP - 341
EP - 374
LA - eng
KW - multiple points of Lévy processes; intersection local time; tubular neighbourhoods; packing measure of multiple points of Brownian motion
UR - http://eudml.org/doc/113603
ER -
References
top- [1] Aizenman, M.Communication personnelle.
- [2] Blumenthal, R.M.; Getoor, R.K.Markov processes and potentiàl theory. Academic Press, New-York, 1968. Zbl0169.49204MR264757
- [3] Dvoretzky, A. ; Erdös, P.Some problems on random walk in space. Proc. Second Berkeley Symp. on Math. Statistics and Probability. University of California Press, Berkeley, 1951, p. 353-367. Zbl0044.14001MR47272
- [4] Dynkin, E.B.Additive functionals of several time-reversible Markov processes. J. Funct. Anal.42 (1981), 64-101. Zbl0467.60069MR620580
- [5] Dynkin, E.B.Random fields associated with multiple points of the Brownian motion. J. Funct. Anal.62 (1985), 397-434. Zbl0579.60081MR794777
- [6] Dynkin, E.B.Self-intersection gauge for random walks and for Brownian motion. A paraître dans Ann. Probab. (1987). Zbl0638.60081MR920254
- [7] Evans, S.N.Potential theory for a family of several Markov processes. A paraître aux Ann. Inst. Henri Poincaré (1987). Zbl0625.60086MR906728
- [8] Geman, D. ; Horowitz, J. ; Rosen, J.A local time analysis of intersections of Brownian paths in the plane. Ann. Probab.12 (1984), 86-107. Zbl0536.60046MR723731
- [9] Hawkes, J.Potential theory of Lévy processes. Proc. London Math. Soc. (3) (1979), 335-352. Zbl0401.60069MR531166
- [10] Hawkes, J.. Multiple points for symmetric Lévy processes. Math. Proc. Cambridge Philos. Soc.83 (1978), 83-90. Zbl0396.60067MR464385
- [11] Ito, K. ; Mc Kean, H.P.Diffusion processes and their sample paths. Second Printing. Springer - Verlag, Berlin, 1974. Zbl0285.60063MR345224
- [12] Kesten, H.Hitting probabilities of single points for processes with stationary independent increments. Mem. Amer. Math. Soc.93 (1969). Zbl0186.50202MR272059
- [13] Le Gall, J.F.,Sur la mesure de Hausdorff de la courbe brownienne. Séminaire de Probabilités XIX. Lect. Notes in Math.1123. Springer - Verlag, Berlin, 1985, p. 297-313. Zbl0563.60071MR889491
- [14] Le Gall, J.F.Sur la saucisse de Wiener et les points multiples du mouvement brownien. Ann. Probab.14 (1986). Zbl0621.60083MR866344
- [15] Le Gall, J.F.Propriétés d'intersection des marches aléatoires, I. Comm. Math. Phys.104 (1986), 471-507. Zbl0609.60078MR840748
- [16] Le Gall, J.F.Le comportement du mouvement brownien entre les deux instants où il passe par un point double. J. Funct. Anal.70 (1987). Zbl0624.60090MR880979
- [17] Le Gall, J.F.The exact Hausdorff measure of Brownian multiple points. A paraître dans le Seminar on Stochastic Processes1986. Birkhäuser. Zbl0619.60073
- [18] Le Gall, J.F.Fluctuation results for the Wiener sausage. Preprint (1986), soumis à Ann. Probab. Zbl0665.60080MR942751
- [19] Le Gall, J.F. ; Rosen, J. ; Shieh, N.R.Multiple pointsfor Lévy processes. Preprint (1986).
- [20] Le Gall, J.F. ; Rosen, J.Limit theorems for random walks in the domain of attraction of a stable law. Article en préparation.
- [21] Le Gall, J.F. ; Taylor, S.J.The packing measure of planar Brownian motion. A paraître dans le Seminar on Stochastic Processes1986. Birkhäuser. Zbl0619.60074
- [22] Neveu, J.Bases mathématiques du calcul des probabilités. Masson, Paris1970. Zbl0203.49901MR272004
- [23] Ray, D.Sojourn times and the exact Hausdorff measure of the sample path for planar Brownian motion. Trans. Amer. Math. Soc.106 (1963),436-444. Zbl0119.14602MR145599
- [24] Rogers, C.A.; Taylor, S.J.Functions continuous and sinpular with respect to a Hausdorff measure. Mathematika8 (1961), 1-31. Zbl0145.28701MR130336
- [25] Rosen, J.A local time approach to the self-intersections of Brownian paths in space. Comm. Math. Phys.88 (1983), 327-338. Zbl0534.60070MR701921
- [26] Rosen, J.Joint continuity of the intersection local times of Markov processes. A paraître dans Ann. Probab. (1987). Zbl0622.60084MR885136
- [27] Rosen, J.Continuity and singularity of the intersection local time of stable processes in R2. Preprint (1985). MR920256
- [28] Sznitman, A.S.Some bounds and limiting results for the measure of Wiener sausage of small radius associated to elliptic diffusions. Preprint (1986). Zbl0628.60080MR904262
- [29] Taylor, S.J.Multiple points for the sample paths of the symmetric stable process. Z. Wahrsch. verw. Gebiete5 (1966), 247-264. Zbl0146.37905MR202193
- [30] Taylor, S.J.Sample path properties of a transient stable process. J. Math. Mech.16 (1967), 1229-1246. Zbl0178.19301MR208684
- [31] Taylor, S.J.The measure theory of random fractals. Math. Proc. Cambridge Philos. Soc.100 (1986), 383-406. Zbl0622.60021MR857718
- [32] Taylor, S.J.; Tricot, C.Packing measure and its evaluation for a Brownian path. Trans. Amer. Math. Soc.288 (1985), 679-699. Zbl0537.28003MR776398
- [33] Williams, D.Path decomposition and continuity of local time for one-dimensional diffusions, I. Proc. London Math. Soc (3) 28 (1974), 738-768. Zbl0326.60093MR350881
- [34] Wolpert, R.Wiener path intersections and local time. J. Funct. Anal.30 (1978), 329-340. Zbl0403.60069MR518339
- [35] Yor, M.Précisions sur l'existence et la continuité des temps locaux d'intersection du mouvement brownien dans Rd. Séminaire de Probabilités XX. Lect. Notes in Math.1204. Springer - Verlag, Berlin, 1986, p. 532-542. Zbl0611.60066MR942042
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.