Décomposition des polyèdres : le point sur le troisième problème de Hilbert

Pierre Cartier

Séminaire Bourbaki (1984-1985)

  • Volume: 27, page 261-288
  • ISSN: 0303-1179

How to cite

top

Cartier, Pierre. "Décomposition des polyèdres : le point sur le troisième problème de Hilbert." Séminaire Bourbaki 27 (1984-1985): 261-288. <http://eudml.org/doc/110047>.

@article{Cartier1984-1985,
author = {Cartier, Pierre},
journal = {Séminaire Bourbaki},
keywords = {decomposition of polyhedra; third Hilbert's problem; bibliography},
language = {fre},
pages = {261-288},
publisher = {Société Mathématique de France},
title = {Décomposition des polyèdres : le point sur le troisième problème de Hilbert},
url = {http://eudml.org/doc/110047},
volume = {27},
year = {1984-1985},
}

TY - JOUR
AU - Cartier, Pierre
TI - Décomposition des polyèdres : le point sur le troisième problème de Hilbert
JO - Séminaire Bourbaki
PY - 1984-1985
PB - Société Mathématique de France
VL - 27
SP - 261
EP - 288
LA - fre
KW - decomposition of polyhedra; third Hilbert's problem; bibliography
UR - http://eudml.org/doc/110047
ER -

References

top
  1. [1] V.G. Boltianskii - Hilbert's third problem, traduit par R.A. Silverman, Winston and Sons, Washington, 1978. Zbl0388.51001MR500434
  2. [2] F.E. Browder (Editeur) - Mathematical developments arising from Hilbert problems, Proc. Symp. Pure Math. vol XXVIII (en deux parties) , American Mathematical Society, Providence, 1976. Zbl0326.00002MR419125
  3. [3] Euclide - The thirteen books of Euclid's Elements, présentés par T.L. Heath, en 3 volumes, Dover, New York, 1976. Zbl0071.24203
  4. [4] P.J. Federico - Descartes on polyhedra (a study of the "De Solidorum Elementis"), Springer, Berlin, 1982. Zbl0498.01004MR680214
  5. [5] H. Hadwiger - Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer, Berlin, 1957. Zbl0078.35703MR102775
  6. [6] D. Hilbert - Gesammelte Abhandlungen, 3 vol., Chelsea, New York, 1965. 
  7. [7] D. Hilbert - Grundlagen der Geometrie, 11e édition, Teubner, Stuttgart, 1968. MR229120
  8. [8] I. Lakatos - Proofs and refutations (The logic of mathematical discovery) , Cambridge University Press, Cambridge, 1976. Zbl0334.00022MR479916
  9. [9] C.H. Sah - Hilbert's third problem : scissors congruence, Pitman, London, 1979. Zbl0406.52004
  10. [10] R. Bricard - Sur une question de géométrie relative aux polyèdres, Nouv. Ann. Math.15(1896), p. 331-334. JFM27.0407.02
  11. [11] M. Dehn - Über raumgleiche Polyeder, Nachr. Akad. Wiss., Göttingen, Math.-Phys. K1.1900, p. 345-354. Zbl31.0505.02JFM31.0505.02
  12. [12] M. Dehn - Über den Rauminhalt, Math. Ann.55(1902), p. 465-478. Zbl32.0486.01MR1511157JFM32.0486.01
  13. [13] H. Hadwiger - Translative Zerlegungsgleichheit der Polyeder des gewöhnlichen Raumes, J. Reine Angew. Math.233(1968), p. 200-212. Zbl0167.19001MR238178
  14. [14] H. Hadwiger und P. Glur - Zerlegungsgleichheit ebener Polygone, Elem. Math.6 (1951), p. 97-106. MR45400
  15. [15] B. Jessen - The algebra of polyhedra and the Dehn - Sydler theorem, Math. Scand.22(1968), p. 241-256. Zbl0183.49803MR251633
  16. [16] B. Jessen, J. Karpf and A. Thorup - Some functional equations in groups and rings, Math. Scand.22(1968), p. 257-265. Zbl0183.04004MR284739
  17. [17] B. Jessen and A. Thorup - The algebra of polytopes in affine spaces, Math. Scand.43(1978), p. 211-240. Zbl0398.51009MR531303
  18. [18] J.-P. Sydler - Sur la décomposition des polyèdres, Comment. Math. Helv.16 (1943/4), p. 266-273. Zbl0060.34312MR11552
  19. [19] J.-P. Sydler - Conditions nécessaires et suffisantes pour l'équivalence des polyèdres de l'espace euclidien à trois dimensions, Comment. Math. Helv.40(1965), p. 43-80. Zbl0135.20906MR192407
  20. [20] V.B. Zylev - Equicomposability of equicomplementable polyhedra, Sov. Math. Doklady161(1965), p. 453-455. Zbl0132.14604
  21. [21] V.B. Zylev - G-composedness and G-complementability, Sov. Math. Doklady179 (1968), p. 403-404. Zbl0181.26302MR226480
  22. [22] J.-L. Cathelineau - Remarques sur l'homologie de SO(n,R) considéré comme groupe discret, C.R. Acad. Sci. Paris, Série I, 295 (1982) , p. 281-283. Zbl0515.20029MR681598
  23. [23] J.L. Dupont - Algebra of polytopes and homology of flag complexes, Osaka J. Math.19(1982), p. 599-641. Zbl0499.51014MR676240
  24. [24] J.L. Dupont and C.H. Sah - Scissor congruences II, Journ. Pure Appl. Algebra, 25(1982), p. 159-195. Zbl0496.52004MR662760
  25. [25] G. Lusztig - The discrete series of GLn over a finite field, Annals of Math. Studies81, Princeton University Press, Princeton, 1974. Zbl0293.20038MR382419
  26. [26] C.H. Sah - Scissor Congruences, I : The Gauss - Bonnet map, Math. Scand.49 (1981), p. 181-210. Zbl0496.52003MR661890
  27. [27] R.C. Alperin and R.K. Dennis - K2 of quaternion algebras, J. Algebra56 (1979) , p. 262-273. Zbl0397.18011MR527169
  28. [28 ] S. Bloch -Higher regulators, algebraic K-theory and regulators of elliptic curves, Publ. Math. IHES, 
  29. [29 ] J. Cheeger - Invariants of flat bundles, in Proc. Int. Congr. Math., Vancouver, 1974, p. 3-6. Zbl0332.55020MR423364
  30. [30] J. Cheeger and J. Simdns - Differential characters and geometric invariants, Prépublication datée 1973. 
  31. [31 ] S. Chern and J. Simons - Characteristic forms and geometric invariants, Ann. of Math.99(1974), p. 48-69. Zbl0283.53036MR353327
  32. [32] J.L. Dupont, W. Parry and C.H. Sah - Schur multipliers of classical Lie groups II, à paraître. 
  33. [33 ] E.M. Friedlander and G. Mislin - Cohomology of classifying spaces of complex Lie groups and related discrete groups, Comment. Math. Helv.59(1984), p. 347-361. Zbl0548.55016MR761803
  34. [34] M. Karoubi - Homology of the infinite orthogonal and symplectic groups over algebraically closed fields, Inv. Math.73(1983), p. 247-250. Zbl0514.18009MR714091
  35. [35] J. Milnor - On the homology of Lie groups made discrete, Comment. Math. Helv.58(1983), p. 72-85. Zbl0528.20033MR699007
  36. [36] W. Parry and C.H. Sah - Third homology of SL(2,R) made discrete, Journ. Pure Appl. Algebra30(1983), p. 181-209. Zbl0527.18006MR722372
  37. [37] D. Quillen - On the cohomology and K-theory of the general linear group over a finite field, Ann. of Math.96(1972), p. 552-586. Zbl0249.18022MR315016
  38. [38] C.H. Sah - Schur multipliers of classical Lie groups, I, à paraître. 
  39. [39] C.H. Sah and J.B. Wagoner - Second homology of Lie groups made discrete, Comm. in Algebra, 5(1977), p. 611-642. Zbl0375.18006MR646087
  40. [40] A. Suslin - Stability in algebraic K-theory, Springer Lecture Notes in Math. vol. 967 (1982), p. 304-333. Zbl0498.18008MR689381
  41. [41] A. Suslin - Homology of GLn , characteristic classes and Milnor K-theory, Lecture Notes Math., vol. 1046 (1984), p. 357-375. Zbl0528.18007MR750690
  42. [42] A. Suslin - On the K-theory of algebraically closed fields, Inv. Math.73 (1983), p. 241-245. Zbl0514.18008MR714090
  43. [43] A. Suslin - On the K-theory of local fields, Journ. Pure App. Algebra34 (1984), p. 301-318. Zbl0548.12009MR772065
  44. [44] P. Blanc - (Co)homologie différentiable et changement de groupe, Astérisque vol. 124-125, 1985, p. 13-29. Zbl0563.57023
  45. [45] A. Haefliger - Sur les classes caractéristiques des feuilletages, Sém. Bourbaki, n° 412 (Juin 1972), Lecture Notes in Mathematics, vol. 317, 1973. Zbl0257.57011MR420655
  46. [46] A. Haefliger - The homology of nilpotent Lie groups made discrete, Astérisque vol. 113-114, 1984, p. 206-211. Zbl0546.55021MR749059
  47. [47] W.T. Van Est - A generalization of the Cartan - Leray spectral sequence, Nederl. Akad. Weten. Proc. Serie A, 61(1958), p. 399-405 et 406-413. Zbl0084.39202
  48. [48] K. Aomoto - Analytic structure of Schläfli function, Nagoya Math. Journ.68 (1977), p. 1-16. Zbl0382.33010MR569685
  49. [49] H.S.M. Coxeter - The functions of Schläfli and Labatschefsky, Quart. J. Math. (Oxford)6(1935), p. 13-29. JFM61.0395.02
  50. [50] L. Lewin - Polylogarithms and associated functions, North Holland, New York, 1981. Zbl0465.33001MR618278
  51. [51] J. Milnor - Hyperbolic geometry : the first 150 years, Bull. Amer. Math. Soc.6(1982), p. 9-24. Zbl0486.01006MR634431
  52. [52] J. Milnor - On the Schläfli differential equality, à paraître. 
  53. [53] Schläfli - On the multiple integral ∫n dx dy ... dz where limits are p1 = a1x+b1y+ ... +h1z&gt;0,p2&gt;0,...,pn&gt;0 , and x2+y2+...+z2&lt;1 , in Gesammelte Mathematische Abhandlungen II, Birkhaüser Verlag, Basel, 1953, p. 219-270. 
  54. [54] Lobatchevski - La théorie des parallèles (réimpression 1980 de la traduction Houel), Monom Editeur. Zbl0497.51001MR636509
  55. [55] C. Roger - Caractères différentiels, in Differential Geometry and Topology (Journées de Dijon 1974), Lect. Notes in Math., vol. 484, Springer, 1975. Zbl0332.57008MR397748

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.