Classification des C*-algèbres purement infinies nucléaires

Claire Anantharaman-Delaroche

Séminaire Bourbaki (1995-1996)

  • Volume: 38, page 7-27
  • ISSN: 0303-1179

How to cite

top

Anantharaman-Delaroche, Claire. "Classification des C*-algèbres purement infinies nucléaires." Séminaire Bourbaki 38 (1995-1996): 7-27. <http://eudml.org/doc/110224>.

@article{Anantharaman1995-1996,
author = {Anantharaman-Delaroche, Claire},
journal = {Séminaire Bourbaki},
keywords = {purely infinite -algebra; nuclear -algebra; exact -algebra; -theoretical invariants; -equivalent; infinite Cuntz algebras; -theory},
language = {fre},
pages = {7-27},
publisher = {Société Mathématique de France},
title = {Classification des C*-algèbres purement infinies nucléaires},
url = {http://eudml.org/doc/110224},
volume = {38},
year = {1995-1996},
}

TY - JOUR
AU - Anantharaman-Delaroche, Claire
TI - Classification des C*-algèbres purement infinies nucléaires
JO - Séminaire Bourbaki
PY - 1995-1996
PB - Société Mathématique de France
VL - 38
SP - 7
EP - 27
LA - fre
KW - purely infinite -algebra; nuclear -algebra; exact -algebra; -theoretical invariants; -equivalent; infinite Cuntz algebras; -theory
UR - http://eudml.org/doc/110224
ER -

References

top
  1. [1] S. Adams, Boundary amenability for word hyperbolic groups and an application to smooth dynamics of simple groups, Topology33 (1994), 765-783. Zbl0838.20042MR1293309
  2. [2] C. Anantharaman-Delaroche, C*-algèbres purement infinies et groupes hyperboliques, Prépublication, Université d'Orléans (1995). 
  3. [3] W. Arveson, Notes on extensions of C*-algebras, Duke Math. J.44 (1977), 329-355. Zbl0368.46052MR438137
  4. [4] B. Blackadar, K-theory for operator algebras, M.S.R.I. Publications5, Springer Verlag, New York (1986). Zbl0597.46072MR859867
  5. [5] B. Blackadar, J. Cuntz, The structure of stable algebraically simple C*- algebras, Amer. J. Math.104 (1982), 813-822. Zbl0518.46048MR667536
  6. [6] B. Blackadar, D. Handelman, Dimension functions and traces on C*- algebras, J. Functional Anal.45 (1982), 297-340. Zbl0513.46047MR650185
  7. [7] L.G. Brown, R.G. Douglas, P.A. Fillmore, Unitary equivalence modulo the compact operators and extensions of C*-algebras, Proc. Conf. on Operator Theory, Springer Lecture Notes in Math.345 (1973), 58-128. Zbl0277.46053MR380478
  8. [8] L.G. Brown, R.G. Douglas, P.A. Fillmore, Extensions of C*-algebras and K-homology, Ann. of Math.105 (1977), 265-324. Zbl0376.46036MR458196
  9. [9] M.-D. Choi, A simple C*-algebra generated by two finite order unitaries, Can. J. Math.31 (1979), 887-890. Zbl0441.46047MR540914
  10. [10] M.-D. Choi, E. Effros, Nuclear C*-algebras and the approximation property, Amer. J. Math.100 (1978), 61-97. Zbl0397.46054MR482238
  11. [11] A. Connes, N. Higson, Déformations, morphismes asymptotiques et K-théorie, C. R. Acad. Sci. Paris310 (1990), 101-106. Zbl0717.46062MR1065438
  12. [12] A. Connes, Noncommutative geometry, Academic Press (1994). Zbl0818.46076MR1303779
  13. [13] J. Cuntz, Simple C*-algebras generated by isometries, Commun. Math. Phys.57 (1977), 173-185. Zbl0399.46045MR467330
  14. [14] J. Cuntz, Dimension functions on simple C*-algebras, Math. Ann.233 (1978), 145-153. Zbl0354.46043MR467332
  15. [15] J. Cuntz, K-theory for certain C*-algebras, Ann. of Math.113 (1981), 181-197. Zbl0437.46060MR604046
  16. [16] J. Cuntz, A class of C*-algebras and topological Markov chains II : Reducible chains and the Ext-functor for C*-algebras, Invent. Math.63 (1981), 25-40. Zbl0461.46047MR608527
  17. [17] C. Cuntz, W. Krieger, A class of C*-algebras and topological Markov chains, Invent. Math.56 (1980), 251-268. Zbl0434.46045MR561974
  18. [18] J. DixmierLes C*-algèbres et leurs représentations, Gauthiers-Villars, Paris (1969). Zbl0174.18601MR246136
  19. [19] E. Effros, D. Handelman, C.L. Shen, Dimension groups and their affine representations, Amer. J. Math.102 (1980), 385-407. Zbl0457.46047MR564479
  20. [20] G.A. Elliott, On the classification of inductive limits of sequences of semi- simple finite dimensional algebras, J. Algebra.38 (1976), 29-44. Zbl0323.46063MR397420
  21. [21] G.A. Elliott, On the classification of C*-algebras of real rank zero, J. Reine Angew. Math.443 (1993), 179-219. Zbl0809.46067MR1241132
  22. [22] G.A. Elliott, Are amenable C*-algebras classifiable?, in Representation theory of groups and algebras, Contemporary Mathematics145 (1993), 423-426. Zbl0806.46068MR1216200
  23. [23] G.A. Elliott, The classification problem for amenable C*-algebras, Proc. I.C.M., Zurich (1994). Zbl0946.46050MR1403992
  24. [24] T. Fack, K-théorie bivariante de Kasparov, Séminaire Bourbaki, Astérisque105- 106 (1983), 149-166. Zbl0542.46039MR728986
  25. [25] U. Haagerup, Quasitraces on exact C*-algebras are traces, Notes manuscrites. Zbl1325.46055
  26. [26] G.G. Kasparov, Hilbert C*-modules: theorems of Stinespring and Voiculescu, J. Operator Theory4 (1980), 133-150. Zbl0456.46059MR587371
  27. [27] G.G. Kasparov, The operator K-functor and extensions of C*-algebras , Math. U.S.S.R. Izv.16 (1981), 513-572. Traduit de Izv. Acad. Nauk S.S.S.R., Ser. Math.44 (1980), 571-636. Zbl0464.46054MR582160
  28. [28] E. Kirchberg, Positive maps and C*-nuclear algebras, Proc. Intern. Conf. on Operator Algebras, Ideals and their applications in theoretical Physics, Leipzig (1977), 225-257, Teubner, Leipzig, 1978. Zbl0407.46049
  29. [29] E. Kirchberg, On non-semi-split extensions, tensor products and exactness of group C*-algebras, Invent. Math.112 (1993), 449-489. Zbl0803.46071
  30. [30] E. Kirchberg, On subalgebras of the CAR-algebra, J. Functional Analysis129 (1995), 35-63. Zbl0912.46059MR1322641
  31. [31] E. Kirchberg, Exact C*-algebras, tensor products, and classification of purely infinite algebras, Proc. I.C.M., Zurich (1994). Zbl0897.46057MR1403994
  32. [32] E. Kirchberg, The classification of purely infinite C*-algebras using Kasparov's theory , version préliminaire, Humboldt Universität zu Berlin (1994). 
  33. [33] M. Laca, J. Spielberg, Purely infinite C*-algebras from boundary actions of discrete groups, Prépublication (1995). Zbl0863.46044MR1420560
  34. [34] C. Lance, On nuclear C*-algebras, J. Functional Analysis12 (1973), 157-176. Zbl0252.46065MR344901
  35. [35] J. von Neumann, Charakterisierung des Spectrums eines Integraloperators, Hermann, Paris (1935). Zbl0011.30801
  36. [36] N.C. Phillips, A classification theorem for purely infinite simple C*-algebras, Prépublication, Univ. Oregon et Fields Inst. (1995). 
  37. [37] M. Rørdam, A simple proof of Elliott's result O2 = O2 ⊗ O2, C. R. Math. Rep. Acad. Sci. Canada16 (1994), 31-36. Zbl0817.46061
  38. [38] M. Rørdam, Classification of certain infinite simple C*-algebras, J. Functional Analysis, à paraître. Zbl0831.46063
  39. [39] J. Rosenberg, C. Schochet, The Künneth theorem and the universal coefficient theorem for Kasparov's generalized K-functor, Duke J. Math.55 (1987), 431-474. Zbl0644.46051MR894590
  40. [40] M. Takesaki, On the cross norm of the direct product of C*-algebras, Tôhoku Math J.16 (1964), 111-122. Zbl0127.07302MR165384
  41. [41] G. Skandalis, Une notion de nucléarité en K-théorie (d'après J. Cuntz), K- theory1 (1988), 549-573. Zbl0653.46065MR953916
  42. [42] G. Skandalis, Kasparov's bivariant K-theory and applications, Expo. Math.9 (1991), 193-250. Zbl0746.19008MR1121156
  43. [43] G. Skandalis, Le bifoncteur de Kasparov n'est pas exact, C. R. Acad. Sci. Paris313 (1991), 939-941. Zbl0744.46066MR1143449
  44. [44] D. Voiculescu, A non-commutative Weyl-von Neumann theorem, Rev. Roum. Math. Pures et Appl.21 (1976), 97-113. Zbl0335.46039MR415338
  45. [45] S. Wassermann, On tensor products of certain group C*-algebras, J. Functional Analysis23 (1976), 239-254. Zbl0358.46040MR425628
  46. [46] S. Wassermann, Exact C*-algebras and related topics, Lecture Notes Series19, Seoul National University (1994). Zbl0828.46054MR1271145
  47. [47] H. Weyl, Über beschrankte quadratischen Formen deren Differenz vollstetig ist, Rend. Circ. mat. Palermo27 (1909), 373-392. Zbl40.0395.01JFM40.0395.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.