Purely infinite C * -algebras arising from dynamical systems

Claire Anantharaman-Delaroche

Bulletin de la Société Mathématique de France (1997)

  • Volume: 125, Issue: 2, page 199-225
  • ISSN: 0037-9484

How to cite

top

Anantharaman-Delaroche, Claire. "Purely infinite $C^*$-algebras arising from dynamical systems." Bulletin de la Société Mathématique de France 125.2 (1997): 199-225. <http://eudml.org/doc/87762>.

@article{Anantharaman1997,
author = {Anantharaman-Delaroche, Claire},
journal = {Bulletin de la Société Mathématique de France},
keywords = {reduced -algebra; -discrete groupoid; purely infinite -algebras; discrete groups of isometries; hyperbolic metric spaces; Hadamard manifolds; universal coefficient theorem; -theory groups},
language = {eng},
number = {2},
pages = {199-225},
publisher = {Société mathématique de France},
title = {Purely infinite $C^*$-algebras arising from dynamical systems},
url = {http://eudml.org/doc/87762},
volume = {125},
year = {1997},
}

TY - JOUR
AU - Anantharaman-Delaroche, Claire
TI - Purely infinite $C^*$-algebras arising from dynamical systems
JO - Bulletin de la Société Mathématique de France
PY - 1997
PB - Société mathématique de France
VL - 125
IS - 2
SP - 199
EP - 225
LA - eng
KW - reduced -algebra; -discrete groupoid; purely infinite -algebras; discrete groups of isometries; hyperbolic metric spaces; Hadamard manifolds; universal coefficient theorem; -theory groups
UR - http://eudml.org/doc/87762
ER -

References

top
  1. [1] ADAMS (S.). — Boundary amenability for word hyperbolic groups and an application to smooth dynamics of simple groups, Topology, t. 33, 1994, p. 765-783. Zbl0838.20042MR96g:58104
  2. [2] AOKI (N.), HIRAIDE (K.). — Topological theory of dynamical systems, Recent advances, North-Holland Mathematical Library, t. 52, 1994. Zbl0798.54047MR95m:58095
  3. [3] ANANTHARAMAN-DELAROCHE (C.). — Systèmes dynamiques non commutatifs et moyennabilité, Math. Ann., t. 279, 1987, p. 297-315. Zbl0608.46036MR89f:46127
  4. [4] ANANTHARAMAN-DELAROCHE (C.). — C*-algèbres purement infinies et groupes hyperboliques. — Prépublication, Orléans, 1995. 
  5. [5] ANANTHARAMAN-DELAROCHE (C.). — Classification des C*-algèbres purement infinies nucléaires, d'après E. Kirchberg, Séminaire Bourbaki 1995-1996, exposé n° 805, to appear in Astérisque, 1996. Zbl0961.46040
  6. [6] ANANTHARAMAN-DELAROCHE (C.), RENAULT (J.). — Amenable groupoids, in preparation. Zbl0960.43003
  7. [7] AZURMANIAN (V.A.), VERSHIK (A.M.). — Star algebras associated with endomorphisms, in Operator algebras and group representations, vol. I, Pitman, 1984, p. 17-27. Zbl0532.46041MR85k:46063
  8. [8] BALLMANN (W.). — Axial isometries of manifolds of non-positive curvature, Math. Ann., t. 259, 1982, p. 131-144. Zbl0487.53039MR83i:53068
  9. [9] BALLMANN (W.), GROMOV (M.), SCHROEDER (V.). — Manifolds of nonpositive curvature, Progress in Mathematics, t. 61, Birkhäuser, 1985. Zbl0591.53001MR87h:53050
  10. [10] BEKKA (M.), COWLING (M.), DE LA HARPE (P.). — Some groups whose reduced C*-algebra is simple, Publ. Math. I.H.E.S., t. 80, 1994, p. 117-134. Zbl0827.22001MR96a:22020
  11. [11] BENOIT (Y.), LABOURIE (F.). — Sur les difféomorphismes d'Anosov affines à feuilletages stable et instable différentiables, Invent. Math., t. 111, 1993, p. 285-308. Zbl0777.58029MR94d:58114
  12. [12] BLACKADAR (B.), CUNTZ (J.). — The structure of stable algebraically simple C*-algebras, Amer. J. Math., t. 104, 1982, p. 813-822. Zbl0518.46048MR84c:46057
  13. [13] CONNES (A.). — Sur la théorie non commutative de l'intégration, in Algèbres d'opérateurs, Lecture Notes in Math., Springer-Verlag, t. 725, 1979, p. 19-143. Zbl0412.46053MR81g:46090
  14. [14] CONNES (A.). — Noncommutative geometry. — Academic Press, 1994. Zbl0818.46076MR95j:46063
  15. [15] CUNTZ (J.), KRIEGER (W.). — A class of C*-algebras and topological Markov chains, Invent. Math., t. 56, 1980, p. 251-268. Zbl0434.46045MR82f:46073a
  16. [16] DEACONU (V.). — Groupoids associated with endomorphisms, Trans. Amer. Math. Soc., t. 347, 1995, p. 1779-1786. Zbl0826.46058MR95h:46104
  17. [17] EBERLEIN (P.), O'NEILL (B.). — Visibility manifolds, Pacific J. Math., t. 46, 1973, p. 45-110. Zbl0264.53026MR49 #1421
  18. [18] FACK (T.), SKANDALIS (G.). — Sur les représentations et idéaux de la C*-algèbre d'un feuilletage, J. Operator Theory, t. 8, 1982, p. 95-129. Zbl0493.46051MR84d:46101
  19. [19] GHYS (E.), DE LA HARPE (P.), éd. — Sur les groupes hyperboliques, d'après Mikhael Gromov, Progress in Mathematics, Birkhäuser, t. 83, 1990. Zbl0731.20025
  20. [20] GROMOV (M.). — Hyperbolic groups, in Essays in group theory, édité par S.M. Gersten, M.S.R.I. Publ., Springer, t. 8, 1987, p. 75-263. Zbl0634.20015MR89e:20070
  21. [21] HELGASON (S.). — Differential geometry, Lie groups, and symmetric spaces. — Academic Press, 1978. Zbl0451.53038
  22. [22] HILSUM (M.), SKANDALIS (G.). — Stabilité des C*-algèbres de feuilletages, Ann. Inst. Fourier, t. 33, 1983, p. 201-208. Zbl0505.46043MR85f:58115
  23. [23] KATOK (A.), HASSELBLATT (B.). — Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its applications, Cambridge University Press, t. 54, 1995. Zbl0878.58020MR96c:58055
  24. [24] KIRCHBERG (E.). — The classification of purely infinite C*-algebras using Kasparov's theory, version préliminaire, Humboldt Universität zu Berlin, 1994. 
  25. [25] LACA (M.), SPIELBERG (J.). — Purely infinite C*-algebras from boundary actions of discrete groups, Prépublication, 1995. 
  26. [26] LANCE (E.C.). — Hilbert C*-modules, A toolkit for operator algebraists, London Math. Soc. L. N. S., t. 210, Cambridge University Press, 1995. Zbl0822.46080MR96k:46100
  27. [27] MOSTOW (G.D.). — Strong rigidity of locally symmetric spaces. — Princeton University Press, 1973. Zbl0265.53039MR52 #5874
  28. [28] MUHLY (P.), RENAULT (J.), WILLIAMS (D.). — Equivalence and isomorphisms for groupoid C*-algebras, J. Operator Theory, t. 17, 1987, p. 3-22. Zbl0645.46040MR88h:46123
  29. [29] PHILLIPS (N.C.). — A classification theorem for purely infinite simple C*-algebras. — Prépublication, Univ. Oregon and Fields Inst., 1995. 
  30. [30] RIEFFEL (M.A.). — Strong Morita equivalence of certain transformation group C*-algebras, Math. Ann., t. 222, 1976, p. 7-22. Zbl0328.22013MR54 #7695
  31. [31] SHUB (M.). — Endomorphisms of compacts differentiable manifolds, Amer. J. Math., t. 91, 1969, p. 175-199. Zbl0201.56305MR39 #2169
  32. [32] SPATZIER (R.J.), ZIMMER (R.J.). — Fundamental groups of negatively curved manifolds and actions of semisimple groups, Topology, t. 30, 1991, p. 591-601. Zbl0744.57022MR92m:57047
  33. [33] SPIELBERG (J.S.). — Free-product groups, Cuntz-Krieger algebras, and covariant maps, Int. J. Math., t. 2, 1991, p. 457-476. Zbl0769.46044MR92j:46120
  34. [34] SPIELBERG (J.S.). — Cuntz-Krieger algebras associated with Fuchsian groups, Ergod. Th. and Dynam. Sys., t. 13, 1993, p. 581-595. Zbl0786.46051MR94k:46143
  35. [35] RENAULT (J.). — A groupoid approach to C*-algebras, Lecture Notes in Math. n° 793, Springer-Verlag, New York, Heidelberg, Berlin, 1980. Zbl0433.46049MR82h:46075
  36. [36] ZIMMER (R.J.). — Amenable ergodic group actions and an application to Poisson boundaries of random walk, J. Funct. Anal., t. 27, 1978, p. 350-372. Zbl0391.28011MR57 #12775
  37. [37] ZIMMER (R.J.). — Hyperfinite factors and amenable ergodic actions, Invent. Math., t. 41, 1977, p. 23-31. Zbl0361.46061MR57 #10438
  38. [38] ZIMMER (R.J.). — On the von Neumann algebra of an ergodic group action, Proc. Amer. Math. Soc., t. 66, 1977, p. 289-293. Zbl0367.28013MR57 #592

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.