Graphes de Ramanujan et applications

Alain Valette

Séminaire Bourbaki (1996-1997)

  • Volume: 39, page 247-276
  • ISSN: 0303-1179

How to cite

top

Valette, Alain. "Graphes de Ramanujan et applications." Séminaire Bourbaki 39 (1996-1997): 247-276. <http://eudml.org/doc/110231>.

@article{Valette1996-1997,
author = {Valette, Alain},
journal = {Séminaire Bourbaki},
keywords = {Ramanujan graph; isoperimetric constant; adjacency matrix},
language = {fre},
pages = {247-276},
publisher = {Société Mathématique de France},
title = {Graphes de Ramanujan et applications},
url = {http://eudml.org/doc/110231},
volume = {39},
year = {1996-1997},
}

TY - JOUR
AU - Valette, Alain
TI - Graphes de Ramanujan et applications
JO - Séminaire Bourbaki
PY - 1996-1997
PB - Société Mathématique de France
VL - 39
SP - 247
EP - 276
LA - fre
KW - Ramanujan graph; isoperimetric constant; adjacency matrix
UR - http://eudml.org/doc/110231
ER -

References

top
  1. [1] N. Alon, Eigenvalues and expanders, Combinatorica, 6 (1986), pp. 83-96. Zbl0661.05053MR875835
  2. [2] N. Alon AND V. Milman, λ1, isoperimetric inequalities for graphs, and superconcentrators, J. Combin. Theory, ser. B, 38 (1985), pp. 73-88. Zbl0549.05051
  3. [3] J. Angel, N. Celniker, S. Poulos, A. Terras, C. Trimble, AND E. VE- Lasquez, Special functions on finite upper half planes, Contemporary Maths., 138 (1992), pp. 1-26. Zbl0790.11078MR1199118
  4. [4] J. Angel, S. Poulos, A. Terras, C. Trimble, AND E. Velasquez, Spherical functions and transforms on finite upper half planes : eigenvalues of the combinatorial Laplacian, uncertainty, traces, Contemporary Math., 173 (1994), pp. 15-70. Zbl0813.11034MR1298195
  5. [5] W. Ballmann AND J. Swiatkowski, On L2-cohomology and property (T) for automorphism groups of polyhedral cell complexes. Preprint, 1996. MR1465598
  6. [6] F. Bien, Constructions of telephone networks by group representations, Notices Amer. Math. Soc., 36 (1989), pp. 5-22. Zbl1194.90021MR972207
  7. [7] N. Biggs, Algebraic graph theory (2nd ed.), Cambridge University Press, 1993. Zbl0797.05032MR1271140
  8. [8] N. Biggs AND A. Boshier, Note on the girth of Ramanujan graphs, J. Combinatorial Theory, ser. B, 49 (1990), pp. 190-194. Zbl0708.05032MR1064675
  9. [9] A. Borel, Cohomologie de certains groupes discrets et Laplacien p-adique, in Séminaire Bourbaki, exposé 437, Springer, pp. 12-34, 1975. Zbl0376.22009MR476919
  10. [10] M. Burger, Cheng's inequality for graphs. Preprint, 1987. 
  11. [11] P. Bürgisser, M. Clausen, AND M. Shokrollahi, Algebraic complexity theory, Springer-Verlag, 1997. Zbl1087.68568MR1440179
  12. [12] D. Cartwright, W. Mlotkowski, AND T. Steger, Property (T) and ã2 groups, Ann. Inst. Fourier, Grenoble, 44 (1993), pp. 213-248. Zbl0792.43002MR1262886
  13. [13] P. Chiu, Cubic Ramanujan graphs, Combinatorica, 12 (1992), pp. 275-285. Zbl0770.05062MR1195890
  14. [14] F. Chung, Diameters and eigenvalues, Journal Amer. Math. Soc., 2 (1989), pp. 187-196. Zbl0678.05037MR965008
  15. [15] —, Spectral graph theory, CBMS reg. conf. ser. in Math.92, Amer. Math. Soc., 1997. MR1421568
  16. [16] P. De La Harpe AND A. Valette, La propriété (T) de Kazhdan pour les groupes localement compacts, Astérisque175, Soc. Math. France, 1989. Zbl0759.22001
  17. [17] Y.C. De Verdière, Distribution de points sur une sphère [d'après Lubotzky, Phillips et Sarnak], in Séminaire Bourbaki, exposé 703, Astérisque177-178, p. 83-93, 1989. Zbl0701.11024
  18. [18] P. Deligne, La conjecture de Weil I, Publ. Math. IHES, 43 (1974), pp. 273-308. Zbl0287.14001
  19. [19] V. Drinfeld, Finitely additive measures on S2 and S3, invariant with respect to rotations, Funct. Anal. and its Appl., 18 (1984), pp. 245-246. Zbl0576.28019
  20. [20] —, The proof of Petersson's conjecture for GL(2) over a global field of characteristic p, Funct. Anal. Appl., 22 (1988), pp. 28-43. Zbl0662.12012
  21. [21] M. Eichler, Quaternäre quadratische Formen und die Riemannsche Vermutung für die Kongruenzzetafunktion, Arch. Math., 5 (1954), pp. 355-366. Zbl0059.03804
  22. [22] P. Erdös AND H. Sachs, Reguläre Graphen gegebener Taillenweite mit minimaler Knollenzahl, Wiss. Z. Univ. Halle-Willenberg Math. Nat. R., 12 (1963), pp. 251-258. Zbl0116.15002
  23. [23] K. Feng AND W. Li, Spectra of hypergraphs and applications, Journal of number theory, 60 (1996), pp. 1-22. Zbl0874.05041
  24. [24] J. Friedman, Some graphs with small second eigenvalues, Combinatorica, 15 (1995), pp. 31-42. Zbl0843.05076
  25. [25] O. Gabber AND Z. Galil, Explicit constructions of linear-sized superconcentrators, J. Comp. and Syst. Sci., 22 (1981), pp. 407-420. Zbl0487.05045
  26. [26] H. Garland, p-adic curvature and the cohomology of discrete subgroups of p-adic groups, Ann. of Math., 97 (1973), pp. 375-423. Zbl0262.22010
  27. [27] L. Gerritzen AND M. Van Der Put, Schottky groups and Mumford curves, Springer Lect. Notes in Math.817, 1980. Zbl0442.14009
  28. [28] Y. Greenberg, Thèse, PhD thesis, Hebrew Univ., Jerusalem, 1995. 
  29. [29] D. Husemoller, Elliptic curves, Springer, 1987. Zbl0605.14032MR868861
  30. [30] Y. Ihara, Discrete subgroups of PL(2, kp), in Algebraic groups and discontinuous subgroups, Proc. Symp. pure Math.IX, Amer. Math. Soc., pp. 272-278, 1966. Zbl0261.20029MR205952
  31. [31] —, On discrete subgroups of the two by two projective linear group over p-adic fields, J. Math. Soc. Japan, 18 (1966), pp. 219-235. Zbl0158.27702MR223463
  32. [32] M. Junge AND G. Pisier, Bilinear forms on exact operator spaces and B(H) ⊗ B(H), Geometric and Functional Analysis, 5 (1995), pp. 329-363. Zbl0832.46052
  33. [33] N. Katz, Estimates for Soto-Andrade sums, J. reine angew. Math., 438 (1993), pp. 143-161. Zbl0798.11053MR1215651
  34. [34] F. Lazebnik, V. Ustimenko, AND A. Woldar, A new series of dense graphs of high girth, Bull. Amer. Math. Soc., 32 (1995), pp. 73-79. Zbl0822.05039MR1284775
  35. [35] W. Li, Eigenvalues of Ramanujan graphs. Preprint, 1996. 
  36. [36] —, Character sums and abelian Ramanujan graphs, J. Number Theory, 41 (1992), pp. 199-214. MR1164798
  37. [37] —, Number theory with applications, World Scientific, 1996. MR1390759
  38. [38] —, A survey of Ramanujan graphs, in Arithmetic, geometry and coding theory (R. Pellikaan, M. Perret, S.G. Vladut eds), W. de Gruyter, pp. 127-143, 1996. Zbl0868.05046MR1394920
  39. [39] W. Li AND P. Solé, Spectra of regular graphs and hypergraphs, and orthogonal polynomials, European J. Combinatorics, 17 (1996), pp. 461-477. Zbl0864.05072MR1397154
  40. [40] B. J. R. Livne, Ramanujan local systems on finite graphs. Preprint, 1997. Zbl0872.05036
  41. [41] A. Lubotzky, Discrete groups, expanding graphs and invariant measures, Birkhäuser, 1994. Zbl0826.22012MR1308046
  42. [42] A. Lubotzky, R. Phillips, AND P. Sarnak, Hecke operators and distributing points on S2, I, Comm. pure and applied Math., 39 (1986), pp. 149-186. Zbl0619.10052MR861487
  43. [43] —, Ramanujan conjectures and explicit constructions of expanders, Proc. Symp. on Theo. of Comp. Sci. (STOC), 86 (1986), pp. 240-246. 
  44. [44] —, Ramanujan graphs, Combinatorica, 8 (1988), pp. 261-277. Zbl0661.05035MR963118
  45. [45] G. Margulis, Explicit construction of concentrators, Problems Inform. Transmission, 9 (1973), pp. 325-332. Zbl0312.22011
  46. [46] —, Explicit constructions of graphs without short cycles and low density codes, Combinatorica, 2 (1982), pp. 71-78. Zbl0492.05044MR671147
  47. [47] —, Explicit group-theoretical constructions of combinatorial schemes and their application to the design of expanders and concentrators, J. Problems of Information Transmission, 24 (1988), pp. 39-46. Zbl0708.05030MR939574
  48. [48] A. Medrano, P. Myers, H. Stark, AND A. Terras, Finite analogues of Euclidean space, J. comput. applied maths., 68 (1996), pp. 221-238. Zbl0874.05030MR1418760
  49. [49] J.-F. Mestre, La méthode des graphes. exemples et applications, in Proc. int. Conf. on class numbers and fund. units of alg. number fields, Katata, Japan, 217-242, 1986. Zbl0621.14021MR891898
  50. [50] T. Miyake, Modular forms, Springer, 1989. Zbl0701.11014MR1021004
  51. [51] M. Morgenstern, Ramanujan graphs and diagrams : function field approach, in Expanding graphs, Amer. Math. Soc, DIMACS ser. 10, pp. 111-117, 1993. Zbl0791.05060MR1235571
  52. [52] —, Existence and explicit construction of q + 1 regular Ramanujan graphs for every prime power q, J. Combinatorial Theory, ser. B, 62 (1994), pp. 44-62. Zbl0814.68098MR1290630
  53. [53] S. Mozes, A zero entropy, mixing of all orders tiling system, Contemporary Math., 135 (1992), pp. 319-325. Zbl0787.28015MR1185097
  54. [54] A. Nevo AND Y. Shalom, Explicit Kazhdan constants for representations of semisimple groups and their lattices. Preprint, 1996. MR1767270
  55. [55] A. Nilli, On the second eigenvalue of a graph, Discrete Math., 91 (1991), pp. 207- 210. Zbl0771.05064MR1124768
  56. [56] A. Ogg, Modular forms and Dirichlet series, Benjamin, 1969. Zbl0191.38101MR256993
  57. [57] P. Pansu, Formules de Matsushima, de Garland, et propriété (T) pour des groupes agissant sur des espaces symétriques ou des immeubles. Preprint, 1995. MR1651383
  58. [58] —, Sous-groupes discrets des groupes de Lie : rigidité, arithméticité, in Séminaire Bourbaki, exposé 778, Astérisque227, pp. 69-105, 1995. Zbl0835.22011MR1321644
  59. [59] G. Pisier, Quadratic forms in unitary operators. A paraître dans Linear Algebra and Appl. Zbl0889.47007MR1479116
  60. [60] —, Espaces d'opérateurs : une nouvelle dualité, in Séminaire Bourbaki, exposé 814, Février, 1996. 
  61. [61] A. Pizer, Ramanujan graphs and Hecke operators, Bull. (New Ser.) Amer. Math. Soc., 23 (1990), pp. 127-137. Zbl0752.05035MR1027904
  62. [62] P. Sarnak, Some applications of modular forms, Cambridge University Press, 1990. Zbl0721.11015MR1102679
  63. [63] J.-P. Serre, Lettre à Winnie Li. 8 octobre 1990. 
  64. [64] —, Lettre à Winnie Li. 5 Novembre 1990. 
  65. [65] —, Arbres, amalgames, SL2, Astérisque46, Soc. Math. France, 1977. 
  66. [66] —, Répartition asymptotique des valeurs propres de l'opérateur de Hecke Tp, J. Amer. Math. Soc., 10 (1997), pp. 75-102. Zbl0871.11032MR1396897
  67. [67] J. Silverman, The arithmetic of elliptic curves, Springer, 1986. Zbl0585.14026MR817210
  68. [68] M. Takesaki, Theory of operator algebras I, Springer-Verlag, 1979. Zbl0436.46043MR548728
  69. [69] A. Terras, Survey of spectra of Laplacians on finite symmetric spaces, Experimental Maths., 5 (1996), pp. 15-32. Zbl0871.05044MR1412951
  70. [70] A. Valette, An application of Ramanujan graphs to C*-algebra tensor products,II, in Sém. théorie spectrale et géométrie, pp. 105-107, Institut Fourier, Grenoble, 1996. Zbl1031.46501MR1721309
  71. [71] —, An application of Ramanujan graphs to C*-algebra tensor products, Discrete Math., 167 (1997), pp. 597-603. Zbl0874.46038MR1446777
  72. [72] A. Venkov AND A. Nitikin, The Selberg trace formula, Ramanujan graphs, and some problems of mathematical physics, St. Petersburg Math. J., 5 (1994), pp. 419- 484. Zbl0882.11032MR1239898
  73. [73] M.-F. Vignéras, Arithmétique des algèbres de quaternions, SpringerLNM800, 1980. Zbl0422.12008MR580949
  74. [74] A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. U.S.A., 34 (1948), pp. 204-207. Zbl0032.26102MR27006
  75. [75] —, Sur les courbes algébriques et les variétés qui s'en déduisent, Hermann, 1948. Zbl0036.16001
  76. [76] A. Zuk, La propriété (T) de Kazhdan pour les groupes agissant sur les polyèdres, C.R. Acad. Sci. Paris, sér. I, 323 (1996), pp. 453-458. Zbl0858.22007MR1408975

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.