Volume, courbure et entropie

Pierre Pansu

Séminaire Bourbaki (1996-1997)

  • Volume: 39, page 83-103
  • ISSN: 0303-1179

How to cite


Pansu, Pierre. "Volume, courbure et entropie." Séminaire Bourbaki 39 (1996-1997): 83-103. <http://eudml.org/doc/110240>.

author = {Pansu, Pierre},
journal = {Séminaire Bourbaki},
language = {fre},
pages = {83-103},
publisher = {Société Mathématique de France},
title = {Volume, courbure et entropie},
url = {http://eudml.org/doc/110240},
volume = {39},
year = {1996-1997},

AU - Pansu, Pierre
TI - Volume, courbure et entropie
JO - Séminaire Bourbaki
PY - 1996-1997
PB - Société Mathématique de France
VL - 39
SP - 83
EP - 103
LA - fre
UR - http://eudml.org/doc/110240
ER -


  1. [ACCS] J.W. Anderson, R. Canary, M. Culler, P. Shalen, Free Kleinian groups and volumes of hyperbolic 3-manifolds, à paraître dans le J. Differen. Geom. Zbl0860.57011MR1412683
  2. [BFL] Y. Benoist, P. Foulon ET F. Labourie, Flots d'Anosov à distributions stable et instable différentiables, J. Amer. Math. Soc.5, 33-74 (1992). Zbl0759.58035MR1124979
  3. [B1] A.L. Besse, Manifolds all of whose geodesics are closed, Ergeb. der Math. Bd 93, Springer (1978). Zbl0387.53010MR496885
  4. [B2] A.L. Besse, Einstein Manifolds, Ergeb. der Math. Bd 10, Springer (1987). Zbl0613.53001MR867684
  5. [BCG1] G. Besson, G. Courtois ET S. Gallot, Volume et entropie minimale des espaces localement symétriques, Invent. Math.103, 417-445 (1991). Zbl0723.53029MR1085114
  6. [BCG2] G. Besson, G. Courtois ET S. Gallot, Entropies et rigidités des espaces localement symétriques de courbure strictement négative, Geom. and Funct. Anal.5, 731-799 (1995). Zbl0851.53032MR1354289
  7. [BCG3] G. Besson, G. Courtois ET S. Gallot, Minimal entropy and Mostow's rigidity theorems, Ergod. Th. Dynam. Syst.16, 623-649 (1996). Zbl0887.58030MR1406425
  8. [BI] D. Burago AND S. Ivanov, On the asymptotic volume of tori, Geom. and Funct. Anal.5, 800-808 (1995). Zbl0846.53043MR1354290
  9. [C] E. Cartan, Leçons sur la géométrie des espaces de Riemann, Gauthier-Villars, Paris (1928). Zbl0060.38101MR20842
  10. [CG] J. Cheeger AND M. Gromov, Collapsing Riemannian manifolds while keeping their curvature bounded, I, J. Differen. Geom.23, 309-346 (1986), II, J. Differen. Geom.32, 269-298 (1990). Zbl0606.53028MR852159
  11. [Co] T. Colding, Large manifolds with positive Ricci curvature, Invent. Math.124, 193-214 (1996). Zbl0871.53028MR1369415
  12. [CK] C. Croke AND B. Kleiner, Conjugacy rigidity for manifolds with a parallel vector field, J. Differen. Geom.39, 659-680 (1994). Zbl0807.53035MR1274134
  13. [DR] E. Damek AND F. Ricci, A class of non-symmetric harmonic riemannian spaces, Bull. Amer. Math. Soc.27, 139-142 (1992). Zbl0755.53032MR1142682
  14. [D] E.I. Dinaburg, On the relations among various entropy characteristics of dynamical systems, Izv. Mat. Nauk SSSR35, 324-366 (1971), Trad. Math. USSR Izv.5, 337-378 (1971). Zbl0248.58007MR286091
  15. [DE] A. Douady AND C. Earle, Conformally natural extensions of homeomorphisms of the circle, Acta Math.157, 23-48 (1986). Zbl0615.30005MR857678
  16. [ES] J. Eells AND J. Sampson, Harmonic maps of Riemannian manifolds, Amer. J. Math.86 (1964), 109-160. Zbl0122.40102MR164306
  17. [Fo] P. Foulon, Nouveaux invariants géométriques des systèmes dynamiques du second ordre : application à l'étude du comportement ergodique, Thèse d'Etat, Ecole Polytechnique (1986). 
  18. [FL] P. Foulon ET F. Labourie, Sur les variétés compactes asymptotiquement harmoniques, Invent. Math.109, 97-111 (1992). Zbl0767.53030MR1168367
  19. [Fu] H. Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. of Math.77, 335-386 (1963). Zbl0192.12704MR146298
  20. [Gh] E. Ghys, Flots d'Anosov dont les feuilletages stables sont différentiables, Ann. Sci. Ec. Norm. Sup. de Paris20, 251-270 (1987). Zbl0663.58025MR911758
  21. [G] M. Gromov, Volume and bounded cohomology, Publ. Math. I.H.E.S.56, 213-307 (1981). Zbl0516.53046MR686042
  22. [Gb] M. Gromov, Hyperbolic manifolds according to Jorgensen and Thurston, Séminaire Bourbaki n° 546, novembre (1979). Zbl0452.51017
  23. [HM] U. Haagerup AND M. Munkholm, Simplices of maximal volume in hyperbolic n-space, Acta Math.1941, 1-11 (1981). Zbl0493.51016MR631085
  24. [K] A. Katok, Four applications of conformal equivalence to geometry and dynamics, Ergod. Th. Dynam. Syst.8, 139-152 (1988). Zbl0668.58042MR967635
  25. [Le] C. Lebrun, Einstein metrics and Mostow rigidity, Math. Res. Lett.2, 1-8(1996). Zbl0974.53035MR1312972
  26. [L] A. Lichnérowicz, Sur les espaces riemanniens complètement harmoniques, Bull. Soc. Math. de France72, 146-169 (1944). Zbl0060.38506MR12886
  27. [Ma] A. Manning, Topological entropy for geodesic flows, Ann. Math.110, 567-573 (1979). Zbl0426.58016MR554385
  28. [MSY] N. Mok, Y.T. Siu AND S.K. Yeung, Geometric superrigidity, Invent. Math.113, 57-83 (1993). Zbl0808.53043MR1223224
  29. [M1] G.D. Mostow, Quasiconformal mappings in n-space and the rigidity of hyperbolic space forms, Publ. Math. I.H.E.S.34, 53-104 (1967). Zbl0189.09402MR1055358
  30. [Sa] A. Sambusetti, An obstruction to the existence of Einstein metrics on 4-manifolds, C.R. Acad. Sci. Paris322, 1213-1218 (1996). Zbl0847.53033MR1396668
  31. [S] Y.T. Siu, Complex analyticity of harmonic maps, and strong rigidity of compact Kähler manifolds, Ann. of Math.112, 73-111 (1980). Zbl0517.53058MR584075
  32. [Sz] Z. Szabo, The Lichnérowicz conjecture on harmonic manifolds, J. Differen. Geom.31, 1-28 (1990). Zbl0686.53042MR1030663
  33. [T] W. Thurston, The geometry and topology of 3-manifolds, Princeton University Press, Princeton (1978). 
  34. [To] D. Toledo, Representations of surface groups in PSU(n, 1) with maximum characteristic number, J. Differen. Geom.29, 125-134 (1989). Zbl0676.57012MR978081
  35. [V] M. Ville, Sur le volume des variétés riemanniennes pincées, Bull. Soc. Math. de France115, 127-139 (1987). Zbl0634.53029MR919420

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.