Volume, courbure et entropie
Séminaire Bourbaki (1996-1997)
- Volume: 39, page 83-103
- ISSN: 0303-1179
Access Full Article
topHow to cite
topPansu, Pierre. "Volume, courbure et entropie." Séminaire Bourbaki 39 (1996-1997): 83-103. <http://eudml.org/doc/110240>.
@article{Pansu1996-1997,
author = {Pansu, Pierre},
journal = {Séminaire Bourbaki},
language = {fre},
pages = {83-103},
publisher = {Société Mathématique de France},
title = {Volume, courbure et entropie},
url = {http://eudml.org/doc/110240},
volume = {39},
year = {1996-1997},
}
TY - JOUR
AU - Pansu, Pierre
TI - Volume, courbure et entropie
JO - Séminaire Bourbaki
PY - 1996-1997
PB - Société Mathématique de France
VL - 39
SP - 83
EP - 103
LA - fre
UR - http://eudml.org/doc/110240
ER -
References
top- [ACCS] J.W. Anderson, R. Canary, M. Culler, P. Shalen, Free Kleinian groups and volumes of hyperbolic 3-manifolds, à paraître dans le J. Differen. Geom. Zbl0860.57011MR1412683
- [BFL] Y. Benoist, P. Foulon ET F. Labourie, Flots d'Anosov à distributions stable et instable différentiables, J. Amer. Math. Soc.5, 33-74 (1992). Zbl0759.58035MR1124979
- [B1] A.L. Besse, Manifolds all of whose geodesics are closed, Ergeb. der Math. Bd 93, Springer (1978). Zbl0387.53010MR496885
- [B2] A.L. Besse, Einstein Manifolds, Ergeb. der Math. Bd 10, Springer (1987). Zbl0613.53001MR867684
- [BCG1] G. Besson, G. Courtois ET S. Gallot, Volume et entropie minimale des espaces localement symétriques, Invent. Math.103, 417-445 (1991). Zbl0723.53029MR1085114
- [BCG2] G. Besson, G. Courtois ET S. Gallot, Entropies et rigidités des espaces localement symétriques de courbure strictement négative, Geom. and Funct. Anal.5, 731-799 (1995). Zbl0851.53032MR1354289
- [BCG3] G. Besson, G. Courtois ET S. Gallot, Minimal entropy and Mostow's rigidity theorems, Ergod. Th. Dynam. Syst.16, 623-649 (1996). Zbl0887.58030MR1406425
- [BI] D. Burago AND S. Ivanov, On the asymptotic volume of tori, Geom. and Funct. Anal.5, 800-808 (1995). Zbl0846.53043MR1354290
- [C] E. Cartan, Leçons sur la géométrie des espaces de Riemann, Gauthier-Villars, Paris (1928). Zbl0060.38101MR20842
- [CG] J. Cheeger AND M. Gromov, Collapsing Riemannian manifolds while keeping their curvature bounded, I, J. Differen. Geom.23, 309-346 (1986), II, J. Differen. Geom.32, 269-298 (1990). Zbl0606.53028MR852159
- [Co] T. Colding, Large manifolds with positive Ricci curvature, Invent. Math.124, 193-214 (1996). Zbl0871.53028MR1369415
- [CK] C. Croke AND B. Kleiner, Conjugacy rigidity for manifolds with a parallel vector field, J. Differen. Geom.39, 659-680 (1994). Zbl0807.53035MR1274134
- [DR] E. Damek AND F. Ricci, A class of non-symmetric harmonic riemannian spaces, Bull. Amer. Math. Soc.27, 139-142 (1992). Zbl0755.53032MR1142682
- [D] E.I. Dinaburg, On the relations among various entropy characteristics of dynamical systems, Izv. Mat. Nauk SSSR35, 324-366 (1971), Trad. Math. USSR Izv.5, 337-378 (1971). Zbl0248.58007MR286091
- [DE] A. Douady AND C. Earle, Conformally natural extensions of homeomorphisms of the circle, Acta Math.157, 23-48 (1986). Zbl0615.30005MR857678
- [ES] J. Eells AND J. Sampson, Harmonic maps of Riemannian manifolds, Amer. J. Math.86 (1964), 109-160. Zbl0122.40102MR164306
- [Fo] P. Foulon, Nouveaux invariants géométriques des systèmes dynamiques du second ordre : application à l'étude du comportement ergodique, Thèse d'Etat, Ecole Polytechnique (1986).
- [FL] P. Foulon ET F. Labourie, Sur les variétés compactes asymptotiquement harmoniques, Invent. Math.109, 97-111 (1992). Zbl0767.53030MR1168367
- [Fu] H. Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. of Math.77, 335-386 (1963). Zbl0192.12704MR146298
- [Gh] E. Ghys, Flots d'Anosov dont les feuilletages stables sont différentiables, Ann. Sci. Ec. Norm. Sup. de Paris20, 251-270 (1987). Zbl0663.58025MR911758
- [G] M. Gromov, Volume and bounded cohomology, Publ. Math. I.H.E.S.56, 213-307 (1981). Zbl0516.53046MR686042
- [Gb] M. Gromov, Hyperbolic manifolds according to Jorgensen and Thurston, Séminaire Bourbaki n° 546, novembre (1979). Zbl0452.51017
- [HM] U. Haagerup AND M. Munkholm, Simplices of maximal volume in hyperbolic n-space, Acta Math.1941, 1-11 (1981). Zbl0493.51016MR631085
- [K] A. Katok, Four applications of conformal equivalence to geometry and dynamics, Ergod. Th. Dynam. Syst.8, 139-152 (1988). Zbl0668.58042MR967635
- [Le] C. Lebrun, Einstein metrics and Mostow rigidity, Math. Res. Lett.2, 1-8(1996). Zbl0974.53035MR1312972
- [L] A. Lichnérowicz, Sur les espaces riemanniens complètement harmoniques, Bull. Soc. Math. de France72, 146-169 (1944). Zbl0060.38506MR12886
- [Ma] A. Manning, Topological entropy for geodesic flows, Ann. Math.110, 567-573 (1979). Zbl0426.58016MR554385
- [MSY] N. Mok, Y.T. Siu AND S.K. Yeung, Geometric superrigidity, Invent. Math.113, 57-83 (1993). Zbl0808.53043MR1223224
- [M1] G.D. Mostow, Quasiconformal mappings in n-space and the rigidity of hyperbolic space forms, Publ. Math. I.H.E.S.34, 53-104 (1967). Zbl0189.09402MR1055358
- [Sa] A. Sambusetti, An obstruction to the existence of Einstein metrics on 4-manifolds, C.R. Acad. Sci. Paris322, 1213-1218 (1996). Zbl0847.53033MR1396668
- [S] Y.T. Siu, Complex analyticity of harmonic maps, and strong rigidity of compact Kähler manifolds, Ann. of Math.112, 73-111 (1980). Zbl0517.53058MR584075
- [Sz] Z. Szabo, The Lichnérowicz conjecture on harmonic manifolds, J. Differen. Geom.31, 1-28 (1990). Zbl0686.53042MR1030663
- [T] W. Thurston, The geometry and topology of 3-manifolds, Princeton University Press, Princeton (1978).
- [To] D. Toledo, Representations of surface groups in PSU(n, 1) with maximum characteristic number, J. Differen. Geom.29, 125-134 (1989). Zbl0676.57012MR978081
- [V] M. Ville, Sur le volume des variétés riemanniennes pincées, Bull. Soc. Math. de France115, 127-139 (1987). Zbl0634.53029MR919420
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.