Random matrices and permutations, matrix integrals and integrable systems

Pierre van Moerbeke

Séminaire Bourbaki (1999-2000)

  • Volume: 42, page 411-433
  • ISSN: 0303-1179

How to cite

top

van Moerbeke, Pierre. "Random matrices and permutations, matrix integrals and integrable systems." Séminaire Bourbaki 42 (1999-2000): 411-433. <http://eudml.org/doc/110282>.

@article{vanMoerbeke1999-2000,
author = {van Moerbeke, Pierre},
journal = {Séminaire Bourbaki},
keywords = {random matrices; random permutations; integrable systems; Painlevé equations; infinite Hermitian matrix ensembles; spectrum; enumerative geometry; moment matrices},
language = {eng},
pages = {411-433},
publisher = {Société Mathématique de France},
title = {Random matrices and permutations, matrix integrals and integrable systems},
url = {http://eudml.org/doc/110282},
volume = {42},
year = {1999-2000},
}

TY - JOUR
AU - van Moerbeke, Pierre
TI - Random matrices and permutations, matrix integrals and integrable systems
JO - Séminaire Bourbaki
PY - 1999-2000
PB - Société Mathématique de France
VL - 42
SP - 411
EP - 433
LA - eng
KW - random matrices; random permutations; integrable systems; Painlevé equations; infinite Hermitian matrix ensembles; spectrum; enumerative geometry; moment matrices
UR - http://eudml.org/doc/110282
ER -

References

top
  1. [1] M. Adler and P. Van Moerbeke: Symmetric random matrices and the Pfaff Lattice, to appear in: Annals of Mathematics, sept 2000 (solv-int/9903009) and The Hermitian, symmetric and symplectic ensembles and PDE's (math. -phys./009001). MR1890646
  2. [2] M. Adler and P. Van Moerbeke: The spectrum of coupled random matrices, Annals of Mathematics, 149, 921-976 (1999). Zbl0936.15018MR1709307
  3. [3] M. Adler and P. Van Moerbeke: Integrals over classical groups, random permutations, Toda and Toeplitz lattices, Comm. Pure Appl. Math. (2000) (math.CO/9912143). Zbl1086.34545MR1794352
  4. [4] M. Adler, T. Shiota and P. Van Moerbeke: Random matrices, vertex operators and the Virasoro algebra, Phys. Lett.A208, 101-112, (1995). And Random matrices, Virasoro algebras and non-commutative KP, Duke Math. J.94, 379-431 (1998). Zbl1061.37047MR1638599
  5. [5] D. Aldous and P. Diaconis: Longest increasing subsequences: From patience sorting to the Baik-Deift-Johansson theorem, Bull. Am. Math. Soc. (new series) 36 (4), 413-432 (1999). Zbl0937.60001MR1694204
  6. [6] J. Baik, P. Deift and K. Johansson: On the distribution of the length of the longest increasing subsequence of random permutations, Math. Archive, Journal Amer. Math. Soc.12, 1119-1178 (1999) (math. CO/9810105). Zbl0932.05001MR1682248
  7. [7] J. Baik and E. Rains: Algebraic aspects of increasing subsequences, (1999), math.CO/9905083 Zbl1007.05096
  8. [8] D. Bessis, Cl. Itzykson and J.-B. Zuber : Quantum field theory techniques in graphical enumeration, Adv. Appl. Math.1, 109-157 (1980). Zbl0453.05035MR603127
  9. [9] P. Biane: Representations of symmetric groups and free probability, preprint (1998). MR1644993
  10. [10] M. Bowick and E. Brézin: Universal scaling of the tail of the density of eigenvalues in random matrix models, Phys. LettersB268, 21-28 (1991). MR1134369
  11. [11] S. Chadha, G. Mahoux, M.L. Mehta : A method of integration over matrix variables : II, J. Phys. A: Math. Gen.14, 579-586 (1981). MR605258
  12. [12] C.M. Cosgrove: Chazy classes IX-XII of third-order differential equations, Stud. Appl. Math.104, 3, 171-228 (2000). Zbl1136.34351MR1752309
  13. [13] P. Diaconis, M. Shashahani: On the eigenvalues of random matricesJ. Appl. Prob., suppl. in honour of Takàcs 31A, 49-61 (1994). Zbl0807.15015MR1274717
  14. [14] P. Erdös and G. Szekeres: A combinatorial theorem in geometry, Compositio Math., 2, 463-470 (1935). Zbl0012.27010JFM61.0651.04
  15. [15] A.S. Fokas, A.R. Its, A.V. Kitaev: The isomonodromy approach to matrix models in 2d quantum gravity, Comm. Math. Phys., 147, 395-430 (1992). Zbl0760.35051MR1174420
  16. [16] P.J. Forrester: The spectrum edge of random matrix ensembles, Nucl. Phys.B, (1993). Zbl1043.82538MR1236195
  17. [17] I.M. Gessel: Symmetric functions and P-recursiveness, J. of Comb. Theory, Ser A, 53, 257-285 (1990). Zbl0704.05001MR1041448
  18. [18] J.M. Hammersley: A few seedlings of research, Proc. Sixth. Berkeley Symp. Math. Statist. and Probability, Vol. 1, 345-394, University of California Press (1972). Zbl0236.00018MR405665
  19. [19] M. Hisakado: Unitary matrix models and Painlevé III, Mod. Phys. Letters, A113001-3010 (1996). Zbl1022.81739MR1426091
  20. [20] Cl. Itzykson, J.-B. Zuber: The planar approximation, J. Math. Phys.21, 411-421 (1980). Zbl0997.81549MR562985
  21. [21] M. Jimbo, T. Miwa, Y. Mori and M. Sato: Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent, Physica1D, 80-158 (1980). Zbl1194.82007MR573370
  22. [22] K. Johansson: The Longest Increasing Subsequence in a Random Permutation and a Unitary Random Matrix Model, Math. Res. Lett., 5, no. 1-2, 63-82 (1998). Zbl0923.60008MR1618351
  23. [23] B.F. Logan and L.A. Shepp: A variational problem for random Young tableaux, Advances in Math., 26, 206-222 (1977). Zbl0363.62068MR1417317
  24. [24] R.D. Kamien, H.D. Politzer, M.B. Wise: Universality of random-matrix predictions for the statistics of energy levelsPhys. rev. letters60,1995-1998 (1988). MR938484
  25. [25] M. Kontsevich: Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys.147, 1-23 (1992). Zbl0756.35081MR1171758
  26. [26] D. Knuth: "The Art of Computer programming, Vol III: Searching and Sorting", Addison-Wesley, Reading, MA, 1973. Zbl0302.68010MR378456
  27. [27] G. Mahoux, M.L. Mehta: A method of integration over matrix variables: IV, J. Phys. I (France)1, 1093-1108 (1991). Zbl0745.28006MR1190440
  28. [28] M.L. Mehta: Random matrices, 2nd ed. Boston: Acad. Press, 1991. Zbl0780.60014MR1083764
  29. [29] T. Nagao, M. Wadati: Correlation functions of random matrix ensembles related to classical orthogonal polynomials, J. Phys. Soc of Japan, 603298-3322 (1991). MR1142971
  30. [30] A.M. Odlyzko: On the distribution of spacings between the zeros of the zeta function48, 273-308 (1987). Zbl0615.10049MR866115
  31. [31] A. Okounkov: Random matrices and random permutations (1999), math.CO/ 9903176 MR1802530
  32. [32] L.A. Pastur: On the universality of the level spacing distribution for some ensembles of random matrices, Letters Math. Phys., 25259-265 (1992). Zbl0758.15017MR1188805
  33. [33] E.M. Rains: Topics in Probability on compact Lie groups, HarvardUniversity doctoral dissertation, (1995). 5B 
  34. [34] E.M. Rains: Increasing subsequences and the classical groups, Elect. J. of Combinatorics, 5, R12 (1998). Zbl0885.05112MR1600095
  35. [35] C.A. Tracy and H. Widom: Level-Spacings distribution and the Airy kernel, Commun. Math. Phys., 159, 151-174 (1994). Zbl0789.35152MR1257246
  36. [36] C.A. Tracy and H. Widom: Random unitary matrices, permutations and Painlevé (1999), math.CO/9811154 Zbl0965.60028MR1727236
  37. [37] C.A. Tracy and H. Widom: On the distribution of the lengths of the longest monotone subsequences in random words (1999), math.CO/9904042 Zbl0989.60012
  38. [38] S.M. Ulam: Monte Carlo calculations in problems of mathematical physics, in Modern Mathematics for the Engineers, E.F. Beckenbach ed., McGraw-Hill, 261- 281 (1961). MR129165
  39. [39] P. Van Moerbeke: Integrable lattices: random matrices and permutations, MSRI-volume on Random matrices and exactly solvable models, Eds.: P. Bleher, A. Its, OxfordUniversity press, 2000 (math.CO/00-10). Zbl0987.15014
  40. [40] A.M. Vershik and S.V. Kerov: Asymptotics of the Plancherel measure of the symmetric group and the limiting form of Young tableaux, Soviet Math. Dokl., 18, 527-531 (1977). Zbl0406.05008

NotesEmbed ?

top

You must be logged in to post comments.