Random matrices and permutations, matrix integrals and integrable systems

Pierre van Moerbeke

Séminaire Bourbaki (1999-2000)

  • Volume: 42, page 411-433
  • ISSN: 0303-1179

How to cite

top

van Moerbeke, Pierre. "Random matrices and permutations, matrix integrals and integrable systems." Séminaire Bourbaki 42 (1999-2000): 411-433. <http://eudml.org/doc/110282>.

@article{vanMoerbeke1999-2000,
author = {van Moerbeke, Pierre},
journal = {Séminaire Bourbaki},
keywords = {random matrices; random permutations; integrable systems; Painlevé equations; infinite Hermitian matrix ensembles; spectrum; enumerative geometry; moment matrices},
language = {eng},
pages = {411-433},
publisher = {Société Mathématique de France},
title = {Random matrices and permutations, matrix integrals and integrable systems},
url = {http://eudml.org/doc/110282},
volume = {42},
year = {1999-2000},
}

TY - JOUR
AU - van Moerbeke, Pierre
TI - Random matrices and permutations, matrix integrals and integrable systems
JO - Séminaire Bourbaki
PY - 1999-2000
PB - Société Mathématique de France
VL - 42
SP - 411
EP - 433
LA - eng
KW - random matrices; random permutations; integrable systems; Painlevé equations; infinite Hermitian matrix ensembles; spectrum; enumerative geometry; moment matrices
UR - http://eudml.org/doc/110282
ER -

References

top
  1. [1] M. Adler and P. Van Moerbeke: Symmetric random matrices and the Pfaff Lattice, to appear in: Annals of Mathematics, sept 2000 (solv-int/9903009) and The Hermitian, symmetric and symplectic ensembles and PDE's (math. -phys./009001). MR1890646
  2. [2] M. Adler and P. Van Moerbeke: The spectrum of coupled random matrices, Annals of Mathematics, 149, 921-976 (1999). Zbl0936.15018MR1709307
  3. [3] M. Adler and P. Van Moerbeke: Integrals over classical groups, random permutations, Toda and Toeplitz lattices, Comm. Pure Appl. Math. (2000) (math.CO/9912143). Zbl1086.34545MR1794352
  4. [4] M. Adler, T. Shiota and P. Van Moerbeke: Random matrices, vertex operators and the Virasoro algebra, Phys. Lett.A208, 101-112, (1995). And Random matrices, Virasoro algebras and non-commutative KP, Duke Math. J.94, 379-431 (1998). Zbl1061.37047MR1638599
  5. [5] D. Aldous and P. Diaconis: Longest increasing subsequences: From patience sorting to the Baik-Deift-Johansson theorem, Bull. Am. Math. Soc. (new series) 36 (4), 413-432 (1999). Zbl0937.60001MR1694204
  6. [6] J. Baik, P. Deift and K. Johansson: On the distribution of the length of the longest increasing subsequence of random permutations, Math. Archive, Journal Amer. Math. Soc.12, 1119-1178 (1999) (math. CO/9810105). Zbl0932.05001MR1682248
  7. [7] J. Baik and E. Rains: Algebraic aspects of increasing subsequences, (1999), math.CO/9905083 Zbl1007.05096
  8. [8] D. Bessis, Cl. Itzykson and J.-B. Zuber : Quantum field theory techniques in graphical enumeration, Adv. Appl. Math.1, 109-157 (1980). Zbl0453.05035MR603127
  9. [9] P. Biane: Representations of symmetric groups and free probability, preprint (1998). MR1644993
  10. [10] M. Bowick and E. Brézin: Universal scaling of the tail of the density of eigenvalues in random matrix models, Phys. LettersB268, 21-28 (1991). MR1134369
  11. [11] S. Chadha, G. Mahoux, M.L. Mehta : A method of integration over matrix variables : II, J. Phys. A: Math. Gen.14, 579-586 (1981). MR605258
  12. [12] C.M. Cosgrove: Chazy classes IX-XII of third-order differential equations, Stud. Appl. Math.104, 3, 171-228 (2000). Zbl1136.34351MR1752309
  13. [13] P. Diaconis, M. Shashahani: On the eigenvalues of random matricesJ. Appl. Prob., suppl. in honour of Takàcs 31A, 49-61 (1994). Zbl0807.15015MR1274717
  14. [14] P. Erdös and G. Szekeres: A combinatorial theorem in geometry, Compositio Math., 2, 463-470 (1935). Zbl0012.27010JFM61.0651.04
  15. [15] A.S. Fokas, A.R. Its, A.V. Kitaev: The isomonodromy approach to matrix models in 2d quantum gravity, Comm. Math. Phys., 147, 395-430 (1992). Zbl0760.35051MR1174420
  16. [16] P.J. Forrester: The spectrum edge of random matrix ensembles, Nucl. Phys.B, (1993). Zbl1043.82538MR1236195
  17. [17] I.M. Gessel: Symmetric functions and P-recursiveness, J. of Comb. Theory, Ser A, 53, 257-285 (1990). Zbl0704.05001MR1041448
  18. [18] J.M. Hammersley: A few seedlings of research, Proc. Sixth. Berkeley Symp. Math. Statist. and Probability, Vol. 1, 345-394, University of California Press (1972). Zbl0236.00018MR405665
  19. [19] M. Hisakado: Unitary matrix models and Painlevé III, Mod. Phys. Letters, A113001-3010 (1996). Zbl1022.81739MR1426091
  20. [20] Cl. Itzykson, J.-B. Zuber: The planar approximation, J. Math. Phys.21, 411-421 (1980). Zbl0997.81549MR562985
  21. [21] M. Jimbo, T. Miwa, Y. Mori and M. Sato: Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent, Physica1D, 80-158 (1980). Zbl1194.82007MR573370
  22. [22] K. Johansson: The Longest Increasing Subsequence in a Random Permutation and a Unitary Random Matrix Model, Math. Res. Lett., 5, no. 1-2, 63-82 (1998). Zbl0923.60008MR1618351
  23. [23] B.F. Logan and L.A. Shepp: A variational problem for random Young tableaux, Advances in Math., 26, 206-222 (1977). Zbl0363.62068MR1417317
  24. [24] R.D. Kamien, H.D. Politzer, M.B. Wise: Universality of random-matrix predictions for the statistics of energy levelsPhys. rev. letters60,1995-1998 (1988). MR938484
  25. [25] M. Kontsevich: Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys.147, 1-23 (1992). Zbl0756.35081MR1171758
  26. [26] D. Knuth: "The Art of Computer programming, Vol III: Searching and Sorting", Addison-Wesley, Reading, MA, 1973. Zbl0302.68010MR378456
  27. [27] G. Mahoux, M.L. Mehta: A method of integration over matrix variables: IV, J. Phys. I (France)1, 1093-1108 (1991). Zbl0745.28006MR1190440
  28. [28] M.L. Mehta: Random matrices, 2nd ed. Boston: Acad. Press, 1991. Zbl0780.60014MR1083764
  29. [29] T. Nagao, M. Wadati: Correlation functions of random matrix ensembles related to classical orthogonal polynomials, J. Phys. Soc of Japan, 603298-3322 (1991). MR1142971
  30. [30] A.M. Odlyzko: On the distribution of spacings between the zeros of the zeta function48, 273-308 (1987). Zbl0615.10049MR866115
  31. [31] A. Okounkov: Random matrices and random permutations (1999), math.CO/ 9903176 MR1802530
  32. [32] L.A. Pastur: On the universality of the level spacing distribution for some ensembles of random matrices, Letters Math. Phys., 25259-265 (1992). Zbl0758.15017MR1188805
  33. [33] E.M. Rains: Topics in Probability on compact Lie groups, HarvardUniversity doctoral dissertation, (1995). 5B 
  34. [34] E.M. Rains: Increasing subsequences and the classical groups, Elect. J. of Combinatorics, 5, R12 (1998). Zbl0885.05112MR1600095
  35. [35] C.A. Tracy and H. Widom: Level-Spacings distribution and the Airy kernel, Commun. Math. Phys., 159, 151-174 (1994). Zbl0789.35152MR1257246
  36. [36] C.A. Tracy and H. Widom: Random unitary matrices, permutations and Painlevé (1999), math.CO/9811154 Zbl0965.60028MR1727236
  37. [37] C.A. Tracy and H. Widom: On the distribution of the lengths of the longest monotone subsequences in random words (1999), math.CO/9904042 Zbl0989.60012
  38. [38] S.M. Ulam: Monte Carlo calculations in problems of mathematical physics, in Modern Mathematics for the Engineers, E.F. Beckenbach ed., McGraw-Hill, 261- 281 (1961). MR129165
  39. [39] P. Van Moerbeke: Integrable lattices: random matrices and permutations, MSRI-volume on Random matrices and exactly solvable models, Eds.: P. Bleher, A. Its, OxfordUniversity press, 2000 (math.CO/00-10). Zbl0987.15014
  40. [40] A.M. Vershik and S.V. Kerov: Asymptotics of the Plancherel measure of the symmetric group and the limiting form of Young tableaux, Soviet Math. Dokl., 18, 527-531 (1977). Zbl0406.05008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.