L'inégalité de Penrose
Séminaire Bourbaki (2000-2001)
- Volume: 43, page 85-111
- ISSN: 0303-1179
Access Full Article
topHow to cite
topHerzlich, Marc. "L'inégalité de Penrose." Séminaire Bourbaki 43 (2000-2001): 85-111. <http://eudml.org/doc/110299>.
@article{Herzlich2000-2001,
author = {Herzlich, Marc},
journal = {Séminaire Bourbaki},
keywords = {Penrose inequality; asymptotically flat manifolds; inverse mean curvature flow; conformal flow; black holes},
language = {fre},
pages = {85-111},
publisher = {Société Mathématique de France},
title = {L'inégalité de Penrose},
url = {http://eudml.org/doc/110299},
volume = {43},
year = {2000-2001},
}
TY - JOUR
AU - Herzlich, Marc
TI - L'inégalité de Penrose
JO - Séminaire Bourbaki
PY - 2000-2001
PB - Société Mathématique de France
VL - 43
SP - 85
EP - 111
LA - fre
KW - Penrose inequality; asymptotically flat manifolds; inverse mean curvature flow; conformal flow; black holes
UR - http://eudml.org/doc/110299
ER -
References
top- [1] R. Arnowitt, S. Deser & C.W. Misner — « Coordinate invariance and energy expressions in General Relativity », Phys. Rev. 122 (1961), p. 997-1006. Zbl0094.23003MR127946
- [2] S. Bando, A. Kasue & H. Nakajima — « On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth », Invent. math. 97 (1989), p. 313-349. Zbl0682.53045MR1001844
- [3] C. Bär — « Lower eigenvalues estimates for Dirac operators », Math. Ann. 293 (1992), p. 39-46. Zbl0741.58046MR1162671
- [4] R. Bartnik — « The mass of an asymptotically flat manifold », Commun. Pure. Appl. Math.39 (1986), p. 661-693. Zbl0598.53045MR849427
- [5] _, « New definition of quasi-local mass », Phys. Rev. Lett.62 (1989), p. 2346-2348. MR996396
- [6] _, « Quasi-spherical metrics and prescribed scalar curvature », J. Diff. Geom.37 (1993), p. 31-71. Zbl0786.53019MR1198599
- [7] R. Bishop & R. Crittenden — Geometry of manifolds, Pure Appl. Math., vol. XV, Acad. Press, New York, 1964. Zbl0132.16003MR169148
- [8] J.-P. Bourguignon — « Stabilité par déformation non-linéaire de la métrique de Minkowski », Sém. Bourbaki n° 740, Astérisque, vol. 201-202-203, Soc. math. France, 1991, p. 321-358. Zbl0754.53060MR1157847
- [9] H. Bray — « Proof of the Riemannian Penrose conjecture using the positive mass theorem », J. Diff. Geom., 59 (2001), p. 177-267. Zbl1039.53034MR1908823
- [10] H. Bray & F. Finster — « Curvature estimates and the positive mass theorem », Commun. Anal. Geom., 10 (2002), p. 291-306. Zbl1030.53041MR1900753
- [11] H. Bray & R. Schoen — « Recent proofs of the Riemannian Penrose inequality », Current Developments in Mathematics, Harvard Univ., 1999. MR1990246
- [12] G.L. Bunting &, A.K. Masood-Ul-Alam — « Non-existence of multiple black holes in asymptotically euclidean vacuum spacetimes », Gen. Rel. Grav.19 (1987), p. 147-154. Zbl0615.53055MR876598
- [13] Y. Choquet-Bruhat — « Positive energy theorems », Relativity, groups and topology II, Les Houches XL, 1983 (B. De Witt & R. Stora, éds.), Elsevier, Amsterdam, 1984, p. 740-785. Zbl0593.53055MR830248
- [14] P.T. Chruściel — « Boundary conditions at spatial infinity from a Hamiltonian point of view », Topological properties and global structure of spacetime, Erice 1985 (P. Bergmann & V. de Sabbata, éds.), Plenum, New York, 1986, p. 49-59. Zbl0687.53070MR1102938
- [15] _, « On the invariant mass conjecture in General Relativity », Commun. Math. Phys120 (1988), p. 233-248. Zbl0661.53060MR973533
- [16] V. Denisov & O. Solovev — « The energy determined in General Relativity on the basis of the traditional Hamiltonian approach does not have physical meaning », Theor. Math. Phys.56 (1983), p. 832-838, english translation. Zbl0541.53024
- [17] L.C. Evans & J. Spruck — « Motion of level sets by mean curvature », J. Diff. Geom.33 (1991), p. 635-681. Zbl0726.53029MR1100206
- [18] R. Geroch — « Energy extraction », Ann. N. Y. Acad. Sci.224 (1973), p. 108-117. Zbl0942.53509
- [19] _, « General Relativity », in Differential geometry, Proc. Symp. Pure Math., vol. 27, Amer. Math. Soc., Providence, 1975. MR378703
- [20] R. Hardt & X. Zhou — « An evolution problem for linear growth functionals », Comm. Partial Differential Equations19 (1994), p. 1879-1907. Zbl0811.35061MR1301176
- [21] S. Hawking — « Gravitational radiation in an expanding universe », J. Math. Phys.9 (1968), p. 598-604.
- [22] S.W. Hawking & G. Ellis — The large-scale structure of space-time, Cambridge Univ. Press, Cambridge, 1973. Zbl0265.53054MR424186
- [23] M. Herzlich — « Compactification conforme des variétés asymptotiquement plates », Bull. Soc. math. France125 (1997), p. 55-92. Zbl0938.53020MR1459298
- [24] _, « A Penrose-like inequality for the mass of Riemannian asymptotically flat manifolds », Commun. Math. Phys.188 (1997), p. 121-133. Zbl0886.53032MR1471334
- [25] O. Hijazi — « Première valeur propre de l'opérateur de Dirac et nombre de Yamabe », C. R. Acad. Sci. Paris313 (1991), p. 865-868. Zbl0738.53030MR1138566
- [26] G. Huisken & T. Ilmanen — « The inverse mean curvature flow and the Riemannian Penrose inequality », J. Diff. Geom., 59 (2001), p. 353-437. Zbl1055.53052MR1916951
- [27] _, « Proof of the Penrose inequality », Int. Math. Res. Not.20 (1997), p. 1045-1058, annonce. Zbl0905.53043
- [28] T. Ilmanen — Elliptic regularization and partial regularity for motion by mean curvature, Memoirs Amer. Math. Soc., vol. 520, Amer. Math. Soc., Providence, RI, 1994. Zbl0798.35066MR1196160
- [29] P.S. Jang & R. Wald — « The positive energy conjecture and the cosmic censor hypothesis », J. Math. Phys.18 (1977), p. 41-44. MR523907
- [30] J. Kazdan — « Positive energy in General Relativity », Sém. Bourbaki n° 593, Astérisque, vol. 92-93, Soc. math. France, 1982, p. 315-330. Zbl0496.53043MR689537
- [31] M. Kruskal — « Maximal extension of the Schwarzschild metric », Phys. Rev. 119 (1960), p. 1743-1745. Zbl0098.19001MR115757
- [32] J. Lee & T.H. Parker — « The Yamabe problem », Bull. Amer. Math. Soc.17 (1987), p. 37-91. Zbl0633.53062MR888880
- [33] A. Lichnerowicz — Théories relativistes de la gravitation et de l'électromagnétisme, Masson, Paris, 1955. Zbl0065.20704
- [34] _, « Spineurs harmoniques », C. R. Acad. Sci. Paris257 (1963), p. 7-9. Zbl0136.18401MR156292
- [35] A. Lichnewsky & R. Temam — « Pseudosolutions of the time-dependant minimal surface problem », J. Diff. Eq.30 (1978), p. 340-363. Zbl0368.49016MR521858
- [36] R.B. Lockhart — « Fredholm properties of a class of elliptic operators on non-compact manifolds », Duke Math. J.48 (1983), p. 289-312. Zbl0486.35027MR610188
- [37] R.B. Lockhart & R. Mcowen — « Elliptic differential operators on non-compact manifolds », Ann. Scuola. Norm. Sup. Pisa12 (1985), p. 409-447. Zbl0615.58048MR837256
- [38] S. Luckhaus — « Solutions for the two-phase Stefan problem with the Gibbs-Thompson law for the melting temperature », Eur. J. Appl. Math.1 (1990), p. 101-111. Zbl0734.35159MR1117346
- [39] E. Malec & N. O'Murchadha — « Trapped surfaces and the Penrose inequality in spherically symmetric geometries », Phys. Rev. D49 (1994), p. 6931-6934. MR1278625
- [40] U. Massari & M. Miranda — Minimal surfaces of codimension one, North-Holland Math. Stud., vol. 91, Elsevier, 1984. Zbl0565.49030MR795963
- [41] B. O'Neill — Semi-Riemannian geometry, Acad. Press, San Diego, 1983. Zbl0531.53051MR719023
- [42] R. Penrose — « Conformal treatment of infinity », Relativity, groups and topology (C. de Witt & B. de Witt, éds.), École d'été de Physique Théorique, Les Houches1963, Cordon and Breach, 1963, p. 563-584. Zbl0148.46403MR168334
- [43] _, « Naked singularities », Ann. N. Y. Acad. Sci.224 (1973), p. 125-134. Zbl0925.53023
- [44] R. Schoen & S.T. Yau — « On the proof of the positive mass conjecture in General Relativity », Commun. Math. Phys65 (1979), p. 45-76. Zbl0405.53045MR526976
- [45] _, « On the structure of manifolds with positive scalar curvature », Manuscripta math.28 (1979), p. 159-183. Zbl0423.53032MR535700
- [46] _, « The energy and linear-momentum of spacetimes in general relativity », Commun. Math. Phys.79 (1981), p. 47-51. Zbl0934.83031MR609227
- [47] K. Schwarzschild — « Über das Gravitationsfeld eines Masses nach der Einsteinschen Theorie », Sitz. König. Preuss. Akad. Wiss. (1916), p. 189-196. Zbl46.1296.02JFM46.1296.02
- [48] L. Simon — Lectures on geometric measure theory, Proc. Centre Math. Anal., vol. 3, Austr. Nat. Univ., 1983. Zbl0546.49019MR756417
- [49] P. Sternberg, G. Williams & W.P. Ziemer — « Regularity of constrained area minimizing hypersurfaces », J. Diff. Eq.94 (1991), p. 83-94. Zbl0743.49016MR1133542
- [50] A. Visintin — « Nucleation and mean curvature flow », Comm. Partial Differential Equations23 (1998), p. 17-53. Zbl0901.53045MR1608492
- [51] R. Wald — General Relativity, Univ. Chicago Press, Chicago, 1984. Zbl0549.53001MR757180
- [52] E. Witten — « A new proof of the positive energy theorem », Commun. Math. Phys. 80 (1981), p. 381-402. Zbl1051.83532MR626707
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.