L'inégalité de Penrose

Marc Herzlich

Séminaire Bourbaki (2000-2001)

  • Volume: 43, page 85-111
  • ISSN: 0303-1179

How to cite

top

Herzlich, Marc. "L'inégalité de Penrose." Séminaire Bourbaki 43 (2000-2001): 85-111. <http://eudml.org/doc/110299>.

@article{Herzlich2000-2001,
author = {Herzlich, Marc},
journal = {Séminaire Bourbaki},
keywords = {Penrose inequality; asymptotically flat manifolds; inverse mean curvature flow; conformal flow; black holes},
language = {fre},
pages = {85-111},
publisher = {Société Mathématique de France},
title = {L'inégalité de Penrose},
url = {http://eudml.org/doc/110299},
volume = {43},
year = {2000-2001},
}

TY - JOUR
AU - Herzlich, Marc
TI - L'inégalité de Penrose
JO - Séminaire Bourbaki
PY - 2000-2001
PB - Société Mathématique de France
VL - 43
SP - 85
EP - 111
LA - fre
KW - Penrose inequality; asymptotically flat manifolds; inverse mean curvature flow; conformal flow; black holes
UR - http://eudml.org/doc/110299
ER -

References

top
  1. [1] R. Arnowitt, S. Deser & C.W. Misner — « Coordinate invariance and energy expressions in General Relativity », Phys. Rev. 122 (1961), p. 997-1006. Zbl0094.23003MR127946
  2. [2] S. Bando, A. Kasue & H. Nakajima — « On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth », Invent. math. 97 (1989), p. 313-349. Zbl0682.53045MR1001844
  3. [3] C. Bär — « Lower eigenvalues estimates for Dirac operators », Math. Ann. 293 (1992), p. 39-46. Zbl0741.58046MR1162671
  4. [4] R. Bartnik — « The mass of an asymptotically flat manifold », Commun. Pure. Appl. Math.39 (1986), p. 661-693. Zbl0598.53045MR849427
  5. [5] _, « New definition of quasi-local mass », Phys. Rev. Lett.62 (1989), p. 2346-2348. MR996396
  6. [6] _, « Quasi-spherical metrics and prescribed scalar curvature », J. Diff. Geom.37 (1993), p. 31-71. Zbl0786.53019MR1198599
  7. [7] R. Bishop & R. Crittenden — Geometry of manifolds, Pure Appl. Math., vol. XV, Acad. Press, New York, 1964. Zbl0132.16003MR169148
  8. [8] J.-P. Bourguignon — « Stabilité par déformation non-linéaire de la métrique de Minkowski », Sém. Bourbaki n° 740, Astérisque, vol. 201-202-203, Soc. math. France, 1991, p. 321-358. Zbl0754.53060MR1157847
  9. [9] H. Bray — « Proof of the Riemannian Penrose conjecture using the positive mass theorem », J. Diff. Geom., 59 (2001), p. 177-267. Zbl1039.53034MR1908823
  10. [10] H. Bray & F. Finster — « Curvature estimates and the positive mass theorem », Commun. Anal. Geom., 10 (2002), p. 291-306. Zbl1030.53041MR1900753
  11. [11] H. Bray & R. Schoen — « Recent proofs of the Riemannian Penrose inequality », Current Developments in Mathematics, Harvard Univ., 1999. MR1990246
  12. [12] G.L. Bunting &, A.K. Masood-Ul-Alam — « Non-existence of multiple black holes in asymptotically euclidean vacuum spacetimes », Gen. Rel. Grav.19 (1987), p. 147-154. Zbl0615.53055MR876598
  13. [13] Y. Choquet-Bruhat — « Positive energy theorems », Relativity, groups and topology II, Les Houches XL, 1983 (B. De Witt & R. Stora, éds.), Elsevier, Amsterdam, 1984, p. 740-785. Zbl0593.53055MR830248
  14. [14] P.T. Chruściel — « Boundary conditions at spatial infinity from a Hamiltonian point of view », Topological properties and global structure of spacetime, Erice 1985 (P. Bergmann & V. de Sabbata, éds.), Plenum, New York, 1986, p. 49-59. Zbl0687.53070MR1102938
  15. [15] _, « On the invariant mass conjecture in General Relativity », Commun. Math. Phys120 (1988), p. 233-248. Zbl0661.53060MR973533
  16. [16] V. Denisov & O. Solovev — « The energy determined in General Relativity on the basis of the traditional Hamiltonian approach does not have physical meaning », Theor. Math. Phys.56 (1983), p. 832-838, english translation. Zbl0541.53024
  17. [17] L.C. Evans & J. Spruck — « Motion of level sets by mean curvature », J. Diff. Geom.33 (1991), p. 635-681. Zbl0726.53029MR1100206
  18. [18] R. Geroch — « Energy extraction », Ann. N. Y. Acad. Sci.224 (1973), p. 108-117. Zbl0942.53509
  19. [19] _, « General Relativity », in Differential geometry, Proc. Symp. Pure Math., vol. 27, Amer. Math. Soc., Providence, 1975. MR378703
  20. [20] R. Hardt & X. Zhou — « An evolution problem for linear growth functionals », Comm. Partial Differential Equations19 (1994), p. 1879-1907. Zbl0811.35061MR1301176
  21. [21] S. Hawking — « Gravitational radiation in an expanding universe », J. Math. Phys.9 (1968), p. 598-604. 
  22. [22] S.W. Hawking & G. Ellis — The large-scale structure of space-time, Cambridge Univ. Press, Cambridge, 1973. Zbl0265.53054MR424186
  23. [23] M. Herzlich — « Compactification conforme des variétés asymptotiquement plates », Bull. Soc. math. France125 (1997), p. 55-92. Zbl0938.53020MR1459298
  24. [24] _, « A Penrose-like inequality for the mass of Riemannian asymptotically flat manifolds », Commun. Math. Phys.188 (1997), p. 121-133. Zbl0886.53032MR1471334
  25. [25] O. Hijazi — « Première valeur propre de l'opérateur de Dirac et nombre de Yamabe », C. R. Acad. Sci. Paris313 (1991), p. 865-868. Zbl0738.53030MR1138566
  26. [26] G. Huisken & T. Ilmanen — « The inverse mean curvature flow and the Riemannian Penrose inequality », J. Diff. Geom., 59 (2001), p. 353-437. Zbl1055.53052MR1916951
  27. [27] _, « Proof of the Penrose inequality », Int. Math. Res. Not.20 (1997), p. 1045-1058, annonce. Zbl0905.53043
  28. [28] T. Ilmanen — Elliptic regularization and partial regularity for motion by mean curvature, Memoirs Amer. Math. Soc., vol. 520, Amer. Math. Soc., Providence, RI, 1994. Zbl0798.35066MR1196160
  29. [29] P.S. Jang & R. Wald — « The positive energy conjecture and the cosmic censor hypothesis », J. Math. Phys.18 (1977), p. 41-44. MR523907
  30. [30] J. Kazdan — « Positive energy in General Relativity », Sém. Bourbaki n° 593, Astérisque, vol. 92-93, Soc. math. France, 1982, p. 315-330. Zbl0496.53043MR689537
  31. [31] M. Kruskal — « Maximal extension of the Schwarzschild metric », Phys. Rev. 119 (1960), p. 1743-1745. Zbl0098.19001MR115757
  32. [32] J. Lee & T.H. Parker — « The Yamabe problem », Bull. Amer. Math. Soc.17 (1987), p. 37-91. Zbl0633.53062MR888880
  33. [33] A. Lichnerowicz — Théories relativistes de la gravitation et de l'électromagnétisme, Masson, Paris, 1955. Zbl0065.20704
  34. [34] _, « Spineurs harmoniques », C. R. Acad. Sci. Paris257 (1963), p. 7-9. Zbl0136.18401MR156292
  35. [35] A. Lichnewsky & R. Temam — « Pseudosolutions of the time-dependant minimal surface problem », J. Diff. Eq.30 (1978), p. 340-363. Zbl0368.49016MR521858
  36. [36] R.B. Lockhart — « Fredholm properties of a class of elliptic operators on non-compact manifolds », Duke Math. J.48 (1983), p. 289-312. Zbl0486.35027MR610188
  37. [37] R.B. Lockhart & R. Mcowen — « Elliptic differential operators on non-compact manifolds », Ann. Scuola. Norm. Sup. Pisa12 (1985), p. 409-447. Zbl0615.58048MR837256
  38. [38] S. Luckhaus — « Solutions for the two-phase Stefan problem with the Gibbs-Thompson law for the melting temperature », Eur. J. Appl. Math.1 (1990), p. 101-111. Zbl0734.35159MR1117346
  39. [39] E. Malec & N. O'Murchadha — « Trapped surfaces and the Penrose inequality in spherically symmetric geometries », Phys. Rev. D49 (1994), p. 6931-6934. MR1278625
  40. [40] U. Massari & M. Miranda — Minimal surfaces of codimension one, North-Holland Math. Stud., vol. 91, Elsevier, 1984. Zbl0565.49030MR795963
  41. [41] B. O'Neill — Semi-Riemannian geometry, Acad. Press, San Diego, 1983. Zbl0531.53051MR719023
  42. [42] R. Penrose — « Conformal treatment of infinity », Relativity, groups and topology (C. de Witt & B. de Witt, éds.), École d'été de Physique Théorique, Les Houches1963, Cordon and Breach, 1963, p. 563-584. Zbl0148.46403MR168334
  43. [43] _, « Naked singularities », Ann. N. Y. Acad. Sci.224 (1973), p. 125-134. Zbl0925.53023
  44. [44] R. Schoen & S.T. Yau — « On the proof of the positive mass conjecture in General Relativity », Commun. Math. Phys65 (1979), p. 45-76. Zbl0405.53045MR526976
  45. [45] _, « On the structure of manifolds with positive scalar curvature », Manuscripta math.28 (1979), p. 159-183. Zbl0423.53032MR535700
  46. [46] _, « The energy and linear-momentum of spacetimes in general relativity », Commun. Math. Phys.79 (1981), p. 47-51. Zbl0934.83031MR609227
  47. [47] K. Schwarzschild — « Über das Gravitationsfeld eines Masses nach der Einsteinschen Theorie », Sitz. König. Preuss. Akad. Wiss. (1916), p. 189-196. Zbl46.1296.02JFM46.1296.02
  48. [48] L. Simon — Lectures on geometric measure theory, Proc. Centre Math. Anal., vol. 3, Austr. Nat. Univ., 1983. Zbl0546.49019MR756417
  49. [49] P. Sternberg, G. Williams & W.P. Ziemer — « Regularity of constrained area minimizing hypersurfaces », J. Diff. Eq.94 (1991), p. 83-94. Zbl0743.49016MR1133542
  50. [50] A. Visintin — « Nucleation and mean curvature flow », Comm. Partial Differential Equations23 (1998), p. 17-53. Zbl0901.53045MR1608492
  51. [51] R. Wald — General Relativity, Univ. Chicago Press, Chicago, 1984. Zbl0549.53001MR757180
  52. [52] E. Witten — « A new proof of the positive energy theorem », Commun. Math. Phys. 80 (1981), p. 381-402. Zbl1051.83532MR626707

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.