Compactification conforme des variétés asymptotiquement plates

Marc Herzlich

Bulletin de la Société Mathématique de France (1997)

  • Volume: 125, Issue: 1, page 55-92
  • ISSN: 0037-9484

How to cite

top

Herzlich, Marc. "Compactification conforme des variétés asymptotiquement plates." Bulletin de la Société Mathématique de France 125.1 (1997): 55-92. <http://eudml.org/doc/87758>.

@article{Herzlich1997,
author = {Herzlich, Marc},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Weyl tensor; Cotton-York tensor; asymptotically flat Riemannian manifold},
language = {fre},
number = {1},
pages = {55-92},
publisher = {Société mathématique de France},
title = {Compactification conforme des variétés asymptotiquement plates},
url = {http://eudml.org/doc/87758},
volume = {125},
year = {1997},
}

TY - JOUR
AU - Herzlich, Marc
TI - Compactification conforme des variétés asymptotiquement plates
JO - Bulletin de la Société Mathématique de France
PY - 1997
PB - Société mathématique de France
VL - 125
IS - 1
SP - 55
EP - 92
LA - fre
KW - Weyl tensor; Cotton-York tensor; asymptotically flat Riemannian manifold
UR - http://eudml.org/doc/87758
ER -

References

top
  1. [1] ANDERSON (M.T.). — Ricci curvature bounds and Einstein metrics on compact manifolds, J. Amer. Math. Soc., t. 2, 1989, p. 455-490. Zbl0694.53045MR90g:53052
  2. [2] ANDERSSON (L.), CHRUŚCIEL (P.T.) and FRIEDRICH (H.). — On the regularity of solutions to the Yamabe equation and the existence of smooth hyperboidal initial data for Einstein's equations, Commun. Math. Phys., t. 149, 1992, p. 587-612. Zbl0764.53027
  3. [3] ASHTEKAR (A.). — On the boundary conditions for gravitational and gauge fields aat spatial infinity, Asymptotic behaviour of mass and spacetime geometry, F.J. Flaherty, ed., Proceedings, Corvallis, Oregon, 1983, Lect. Notes in Physics, t. 202, Springer, 1984, p. 95-109. Zbl0553.53050
  4. [4] ASHTEKAR (A.) and HANSEN (R.O.). — A unified treatment of null and spatial infinity in general relativity, J. Math. Phys., t. 19, 1978, p. 1542-1566. MR58 #20188
  5. [5] ASHTEKAR (A.) and MAGNON (A.). — From i0 to the 3 + 1 description of infinity, J. Math. Phys., t. 25, 1984, p. 2682-2691. Zbl0559.53044MR85i:83017
  6. [6] BANDO (S.), KASUE (A.), and NAKAJIMA (H.). — On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth, Invent. Math., t. 97, 1989, p. 313-349. Zbl0682.53045MR90c:53098
  7. [7] BARTNIK (R.). — The mass of an asymptotically flat manifold. — Commun. Pure Appl. Math., t. 39, 1986, p. 661-693. Zbl0598.53045MR88b:58144
  8. [8] BERS (L.), JOHN (F.) and SCHECHTER (M.). — Partial differential equations. — American Mathematical Society, Providence, 1974. 
  9. [9] BESSE (A.L.). — Einstein manifolds, Ergeb. Math. Grenzgeb., t. 10, Springer, Berlin, 1987. Zbl0613.53001MR88f:53087
  10. [10] CARTAN (É.). — Les espaces à connexion conforme, Ann. Soc. Pol. Mat., t. 22, 1923, p. 171-221. Zbl50.0493.01JFM50.0493.01
  11. [11] FRIEDRICH (H.). — Cauchy problems for the conformal vacuum field equations in General Relativity, Commun. Math. Phys., t. 91, 1983, p. 445-472. Zbl0555.35116MR85g:83005
  12. [12] FRIEDRICH (H.). — Einstein equations and conformal structure : existence of Anti-de Sitter-type spacetimes, J. Geom. Phys., t. 17, 1995, p. 125-184. Zbl0840.53055MR96j:83008
  13. [13] GAUDUCHON (P.). — Connexion canonique et structures de Weyl en géométrie conforme, Juin 1990, non publié. 
  14. [14] GREENE (R.), PETERSEN (P.) and ZHU (S.). — Riemannian manifolds of faster-than-quadratic curvature decay, Int. Math. Res. Notices, t. 9, 1994, p. 363-377. Zbl0833.53037MR95m:53054
  15. [15] HAWKING (S.W.) and ELLIS (G.F.R.). — The large-scale structure of space-time. — Cambridge Univ. Press, Cambridge, 1973. Zbl0265.53054MR54 #12154
  16. [16] HEBEY (E.) and HERZLICH (M.). — Convergence of riemannian manifolds; a status report, Preprint École Polytechnique (Palaiseau), n° 1096, 1995. 
  17. [17] LEE (J.) and PARKER (T.H.). — The Yamabe problem, Bull. Amer. Math. Soc., t. 117, 1987, p. 37-91. Zbl0633.53062MR88f:53001
  18. [18] LOCKHART (R.B.). — Fredholm properties of a class of elliptic operators on non-compact manifolds, Duke Math. J., t. 48, 1983, p. 289-312. Zbl0486.35027MR82j:35050
  19. [19] LOCKHART (R.B.) and MCOWEN (R.). — Elliptic differential operators on non-compact manifolds, Ann. Scuola. Norm. Sup. Pisa, t. 12, 1985, p. 409-447. Zbl0615.58048MR87k:58266
  20. [20] MAZ'YA (V.G.) and PLAMENEEVSKI (B.A.). — Estimates in Lp and in Hölder classes and the Miranda-Agmon Maximum principle for solutions of elliptic boundary value problems in domains with singular points on the boundary (en russe), Math. Nachr., t. 81, 1978, p. 25-82; trad. anglaise Amer. Math. Soc. Transl., t. 123, 1984, p. 1-56. Zbl0554.35035
  21. [21] PENROSE (R.). — Conformal treatment of infinity, Relativity, groups and topology (C. de Witt and B. de Witt, eds.), École d'été de Physique Théorique, Les Houches 1963. — Gordon and Breach, 1963. 
  22. [22] SCHOEN (R.). — Conformal deformation of a Riemannian manifold to constant scalar curvature, J. Diff. Geom, t. 20, 1984, p. 479-495. Zbl0576.53028MR86i:58137
  23. [23] WEYL (H.). — Zur Infinitesimalgeometrie : Einordnung der projektiven und den konform Auffassung, Göttinger Nachrichten, 1921, p. 99-112, repris dans Gesammelte Abhandlungen, vol. II, Chelsea, New York, 1967, p. 195-207. Zbl48.0844.04JFM48.0844.04

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.