KAM techniques in PDE

Ricardo Pérez-Marco

Séminaire Bourbaki (2001-2002)

  • Volume: 44, page 307-317
  • ISSN: 0303-1179

How to cite


Pérez-Marco, Ricardo. "KAM techniques in PDE." Séminaire Bourbaki 44 (2001-2002): 307-317. <http://eudml.org/doc/110312>.

author = {Pérez-Marco, Ricardo},
journal = {Séminaire Bourbaki},
keywords = {KAM theorem; quasi-periodic solutions; partial differential equations},
language = {eng},
pages = {307-317},
publisher = {Société Mathématique de France},
title = {KAM techniques in PDE},
url = {http://eudml.org/doc/110312},
volume = {44},
year = {2001-2002},

AU - Pérez-Marco, Ricardo
TI - KAM techniques in PDE
JO - Séminaire Bourbaki
PY - 2001-2002
PB - Société Mathématique de France
VL - 44
SP - 307
EP - 317
LA - eng
KW - KAM theorem; quasi-periodic solutions; partial differential equations
UR - http://eudml.org/doc/110312
ER -


  1. [ARN] V.I. Arnold — Proof of a theorem of A.N. Kolmogorov on the conservation of quasi-periodic motions under a small change of the Hamiltonian function, Uspekhi Mat. Nauk.18 (1963), no. 5, p. 13-40, Russ. Math. Surv.18 (1963), no. 5, p. 9-36. Zbl0129.16606MR163025
  2. [BOS] J.-B. Bost — Tores invariants des systèmes dynamiques hamiltoniens (d'après Kolmogorov, Arnold, Moser, Rüssmann, Zehnder, Herman, Pöschel, ...), in Sém. Bourbaki1984-85, Astérisque, vol. 133-134, Soc. Math. France, Paris, 1985, exp. n° 639, p. 113-157. Zbl0602.58021MR837218
  3. [BOU1] J. Bourgain — Construction of quasi-periodic solutions of Hamiltonian perturbations of linear equations and applications to nonlinear PDE, International Math. Res. Notices11 (1994), p. 475-497. Zbl0817.35102MR1316975
  4. [BOU2] _, Non-linear Schrödinger equations, Park City Lectures, July 1995. 
  5. [BOU3] _, On Melnikov's persistence problem, Mathematical Research Letters4 (1997), p. 445-458. Zbl0897.58020
  6. [BOU4] _, Quasi-periodic solutions of Hamiltonian perturbations of 2D-linear Schrödinger equations, Ann. Math.148 (1998), p. 363-439. Zbl0928.35161MR1668547
  7. [BOU5] _, Green's function estimates for lattice Schrödinger operators and applications, Manuscript, 2001. 
  8. [B-G-S] J. Bourgain, M. Goldstein & W. Schlag — Anderson localization for Schrödinger operators on Z2 with quasi-periodic potential, Preprint, 2000. MR1947458
  9. [CHE] C.-Q. Chen — Lower dimensional invariant tori in the region of instability for nearly integrable Hamiltonian systems, Comm. Math. Phys.203 (1999), no. 2, p. 385-419. Zbl0935.70013MR1697603
  10. [CRA] W. Craig — Problèmes de petits diviseurs dans les équations aux dérivées partielles, Panoramas et Synthèses, vol. 9, Soc. Math. France, Paris, 2000. Zbl0977.35014MR1804420
  11. [C-W] W. Craig & C.E. Wayne — Newton's method and periodic solutions of non-linear wave equations, Comm. Pure Appl. Math.46 (1993), p. 1409- 1498. Zbl0794.35104MR1239318
  12. [ELI1] L.H. Eliasson — Perturbations of stable invariant tori for Hamiltonian systems, Ann. Sco. Norm. Sup. Pisa, Sci. Fis. Mat., Ser. IVXV (1988), no. 1, p. 115-147. Zbl0685.58024MR1001032
  13. [ELI2] _, Biasymptotic solutions of perturbed integrable Hamiltonian systems, Bol. Soc. Mat. Bras.25 (1994), no. 1, p. 57-76. Zbl0799.58026MR1274762
  14. [GRA] S.M. Graff — On the continuation of hyperbolic invariant tori for Hamiltonian systems, J. Diff. Eq.15 (1974), p. 1-69. Zbl0257.34048MR365626
  15. [K-P] T. Kappeler & J. Pöschel — KDV and KAM, Book to appear in Springer-Verlag. MR1997070
  16. [KOL] A.N. Kolmogorov — On the conservation of conditionally periodic motions for a small change in Hamilton's function, Dokl. Acad. Nauk. SSSR98 (1954), p. 525-530. Zbl0056.31502MR68687
  17. [KUK1] S.V. Kuksin — Nearly integrable infinite-dimensional systems, LNM, vol. 1556, Springer-Verlag, 1991. 
  18. [KUK2] _, Elements of a qualitative theory of Hamiltonian PDEs, in Proceedings ICM, Vol. II, Berlin (1998), Doc. Math., Deutsche Math. Verein., 1998, p. 819-829. MR1648129
  19. [KUK3] _, Analysis of Hamiltonian PDEs, Oxford Lecture Series, vol. 19, Oxford University Press, 2000. MR1857574
  20. [LIA] A.M. Liapounov — Problème général de la stabilité du mouvement, Ann. Math. Studies, vol. 17, Princeton Univ. Press, Princeton, 1947. Zbl0031.18403MR21186
  21. [MEL] V.K. Melnikov — Dokl. Akad. Nauk. SSSR165 (1965), no. 6, p. 1245-1248, Dokl. Akad. Nauk. SSSR181 (1968) no. 3, p. 546-549. MR201753
  22. [MOS] J. Moser — Stable and random motions in dynamical systems, Ann. Math. Studies, vol. 77, Princeton Univ. Press, Princeton, 1973. Zbl0271.70009MR442980
  23. [NEU1] O. Neugebauer — Astronomical cuneiform texts I, II, III, Springer-Verlag, 1983. MR704658
  24. [NEU2] _, The exact sciences in antiquity, Dover Publications, 1969. MR260517
  25. [POS1] J. Pöschel — On elliptic lower dimensional tori in Hamiltonian systems, Math. Z.202 (1989), p. 559-608. Zbl0662.58037MR1022821
  26. [POS2] _, Non-linear partial differential equations, Birkhoff normal forms, and KAM theory, in European Congress of Mathematics, Vol. II (Budapest1996), Progr. Math., vol. 169, Birkhäuser, Basel, 1998. 
  27. [PTO] Ptolomy — Almagest, .... 
  28. [RUS] H. Russmann — Invariant tori in non-degenerate nearly integrable hamiltonian systems, Regular and Chaotic Dynamics6 (2001), no. 2, p. 119-204. Zbl0992.37050MR1843664
  29. [S-M] C.L. Siegel & J. Moser — Lectures on Celestial Mechanics, Springer-Verlag, 1971. Zbl0817.70001MR502448
  30. [YOU] J. You — Perturbations of lower-dimensional tori for Hamiltonian systems, J. Diff. Equ.152 (1999), no. 1, p. 1-29. Zbl0919.58055MR1672008
  31. [ZEH] E. Zehnder — Generalized implicit function theorem with applications to some small divisors problems, I and II, Comm. Pure Appl. Math.28 (1975), p. 91-140; (1976), p. 49-111. Zbl0309.58006MR380867

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.