Iwasawa algebras and arithmetic

John Coates

Séminaire Bourbaki (2001-2002)

  • Volume: 44, page 37-52
  • ISSN: 0303-1179

How to cite

top

Coates, John. "Iwasawa algebras and arithmetic." Séminaire Bourbaki 44 (2001-2002): 37-52. <http://eudml.org/doc/110313>.

@article{Coates2001-2002,
author = {Coates, John},
journal = {Séminaire Bourbaki},
language = {eng},
pages = {37-52},
publisher = {Société Mathématique de France},
title = {Iwasawa algebras and arithmetic},
url = {http://eudml.org/doc/110313},
volume = {44},
year = {2001-2002},
}

TY - JOUR
AU - Coates, John
TI - Iwasawa algebras and arithmetic
JO - Séminaire Bourbaki
PY - 2001-2002
PB - Société Mathématique de France
VL - 44
SP - 37
EP - 52
LA - eng
UR - http://eudml.org/doc/110313
ER -

References

top
  1. [As] K. Asano — Zur Arithmetik in Schiefringen, Osaka J. Math.2 (1949), p. 98- 134. Zbl0041.16601MR31467
  2. [Bj] J.-E. Björk — Filtered Noetherian Rings, in Noetherian rings and their applications, Math. Survey Monographs, vol. 24, AMS, 1987, p. 59-97. Zbl0648.16001MR921079
  3. [B-CA] N. Bourbaki — Algèbre Commutative, Paris, Hermann, 1972. MR360549
  4. [Ch1] M. Chamarie — Anneaux de Krull non commutatifs, J. Algebra72 (1981), p. 210-222. Zbl0468.16008MR634623
  5. [Ch2] _, Modules sur les anneaux de Krull non commutatifs, in Sém. d'Algèbre P. Dubreil et M.-P. Malliavin 1982, Springer Lecture Notes, vol. 1029, Springer, 1983, p. 283-310. Zbl0528.16003MR732480
  6. [CH] J. Coates & S. Howson — Euler characteristics and elliptic curves II, J. Math. Soc. Japan53 (2001), p. 175-235. Zbl1046.11079MR1800527
  7. [CSS] J. Coates, P. Schneider & R. Sujatha — Modules over Iwasawa algebras, J. Inst. Math. Jussieu2 (2003), p. 73-108. Zbl1061.11060MR1955208
  8. [CS] J. Coates & R. Sujatha — Galois cohomology of elliptic curves, Lecture Notes, vol. 88, TIFR-AMS, 2000. Zbl0973.11059MR1759312
  9. [Cr1] J. Cremona — Algorithms for modular elliptic curves, 2nd ed., Cambridge University Press, 1997. Zbl0758.14042MR1628193
  10. [Fi1] T. Fisher - On 5 and 7 descents for elliptic curves, Ph.D. Thesis, Cambridge University, 2000. 
  11. [Fi2] _, Descent calculations for the elliptic curves of conductor 11, Proc. London Math. Soc.86 (2003), p. 583-606. Zbl1052.11038MR1974391
  12. [HM] Y. Hachimori & K. Matsuno — An analogue of Kida's formula for the Selmer groups of elliptic curves, J. Alg. Geometry8 (1999), p. 581-601. Zbl1081.11508MR1689359
  13. [HV] Y. Hachimori & O. Venjakob — Completely faithful Selmer groups over Kummer extensions, to appear. Zbl1117.14046MR2046605
  14. [Ha] M. Harris - p-adic representations arising from descent on abelian varieties, Compositio Math.30 (1979), p. 177-245. Zbl0417.14034MR546966
  15. [Ho] S. Howson — Structure of central torsion Iwasawa modules, Bull. Soc. math. France130 (2002), no. 4, p. 507-535. Zbl1126.11343MR1947451
  16. [Iw] K. Iwasawa — On Γ-extensions of number fields, Bull. AMS65 (1959), p. 183-226. Zbl0089.02402
  17. [Ja] H. Jacobson — Theory of rings, Math. Surveys, vol. 2, AMS, Providence, 1943. MR8601
  18. [Ka] M. Kashiwara — Algebraic study of systems of partial differential equations, Master thesis, Tokyo University, 1971, English translation in Mem. Soc. math. France (N.S.), vol. 63 (1995). Zbl0877.35003MR1384226
  19. [Kat] K. Kato — p-adic Hodge theory and values of zeta functions of modular forms, to appear. Zbl1142.11336MR2104361
  20. [La] M. Lazard — Groupes analytiques p-adiques, Publ. Math. IHÉS26 (1965), p. 380-603. Zbl0139.02302MR209286
  21. [Li] Li Huishi — Lifting Ore sets of Noetherian filtered rings and applications, J. Algebra179 (1996), p. 686-703. Zbl0849.16037MR1371738
  22. [LO] Li Huishi & F. Van Oystaeyen — Zariskian Filtrations, Kluwer, Dordrecht, 1996. Zbl0862.16027MR1420862
  23. [Ma] B. Mazur — Rational points of abelian varieties in towers of number fields, Invent. Math.18 (1992), p. 183-266. Zbl0245.14015MR444670
  24. [Oc] O. Ochi — Iwasawa modules via homotopy theory, Ph.D. Thesis, Cambridge University, 1999. 
  25. [OV] Y. Ochi & O. Venjakob — On the structure of Selmer groups over p-adic Lie extensions, J. Alg. Geom11 (2002), p. 547-576. Zbl1041.11041MR1894938
  26. [Ro] J.C. Robson — Cyclic and faithful objects in quotient categories with applications to Noetherian simple or Asano rings, in Noncommutative Ring Theory, Springer Lecture Notes, vol. 545, Springer, 1976, p. 151-172. Zbl0336.16022MR427374
  27. [Se2] J.-P. Serre — Letter to K. Iwasawa, dated August 27th 1958. 
  28. [Se3] _, Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math.15 (1972), p. 259-331. Zbl0235.14012MR387283
  29. [Se1] _, Classes des corps cyclotomiques (d'après K. Iwasawa), in Sém. Bourbaki, Collection hors série, vol. 5, Société mathématique de France, 1995, exp. n° 174, décembre 1958, p. 83-93. 
  30. [Ve1] O. Venjakob — Iwasawa Theory of p-adic Lie Extensions, Thesis, Heidelberg University, 2000. Zbl1049.11506
  31. [Ve2] _, On the structure of the Iwasawa algebra of a p-adic Lie group, J. European Math. Soc4 (2002), p. 271-311. Zbl1049.16016MR1924402
  32. [Ve3] _, A non-commutative Weierstrass preparation theorem and its applications to Iwasawa theory, J. reine angew. Math.559 (2003), p. 153-191. Zbl1051.11056MR1989649
  33. [WK] E. Wexler-Kreindler — Microlocalisation, platitude et théorie de torsion, Comm. Algebra16 (1988), p. 1813-1852. Zbl0647.16001MR952213

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.