Structure of central torsion Iwasawa modules

Susan Howson

Bulletin de la Société Mathématique de France (2002)

  • Volume: 130, Issue: 4, page 507-535
  • ISSN: 0037-9484

Abstract

top
We describe an approach to determining, up to pseudoisomorphism, the structure of a central-torsion module over the Iwasawa algebra of a pro- p , p -adic, Lie group containing no element of order p . The techniques employed follow classical methods used in the commutative case, but using Ore’s method of localisation. We then consider the properties of certain invariants which may prove useful in determining the structure of a module. Finally, we describe the case of pro- p subgroups of GL 2 ( p ) in detail and give a brief example from the theory of elliptic curves.

How to cite

top

Howson, Susan. "Structure of central torsion Iwasawa modules." Bulletin de la Société Mathématique de France 130.4 (2002): 507-535. <http://eudml.org/doc/272306>.

@article{Howson2002,
abstract = {We describe an approach to determining, up to pseudoisomorphism, the structure of a central-torsion module over the Iwasawa algebra of a pro-$p$, $p$-adic, Lie group containing no element of order $p$. The techniques employed follow classical methods used in the commutative case, but using Ore’s method of localisation. We then consider the properties of certain invariants which may prove useful in determining the structure of a module. Finally, we describe the case of pro-$p$ subgroups of $\mathrm \{GL\}_2 (\mathbb \{Z\}_p) $ in detail and give a brief example from the theory of elliptic curves.},
author = {Howson, Susan},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Iwasawa theory; Euler characteristics; Iwasawa modules; structure theory},
language = {eng},
number = {4},
pages = {507-535},
publisher = {Société mathématique de France},
title = {Structure of central torsion Iwasawa modules},
url = {http://eudml.org/doc/272306},
volume = {130},
year = {2002},
}

TY - JOUR
AU - Howson, Susan
TI - Structure of central torsion Iwasawa modules
JO - Bulletin de la Société Mathématique de France
PY - 2002
PB - Société mathématique de France
VL - 130
IS - 4
SP - 507
EP - 535
AB - We describe an approach to determining, up to pseudoisomorphism, the structure of a central-torsion module over the Iwasawa algebra of a pro-$p$, $p$-adic, Lie group containing no element of order $p$. The techniques employed follow classical methods used in the commutative case, but using Ore’s method of localisation. We then consider the properties of certain invariants which may prove useful in determining the structure of a module. Finally, we describe the case of pro-$p$ subgroups of $\mathrm {GL}_2 (\mathbb {Z}_p) $ in detail and give a brief example from the theory of elliptic curves.
LA - eng
KW - Iwasawa theory; Euler characteristics; Iwasawa modules; structure theory
UR - http://eudml.org/doc/272306
ER -

References

top
  1. [1] J.-E. Björk – « Filtered Noetherian Rings », Noetherian Rings and their Applications, Math. Surv. Monogr., vol. 24, Oberwolfach/FRG, 1983, p. 59–97. Zbl0648.16001MR921079
  2. [2] M. Boratynsky – « A Change of Rings Theorem and the Artin-Rees Property », Proc. Amer. Math. Soc.53 (1975), p. 307–310. Zbl0319.16024MR401840
  3. [3] S. Bosch, U. Guntzer & R. Remmert – Non-Archimedean Analysis, Grundlehren der mathematischen Wissenschaften, vol. 261, Springer Verlag, 1984. Zbl0539.14017MR746961
  4. [4] A. Brumer – « Pseudocompact Algebras, Profinite Groups and Class formations », J. Algebra4 (1966), p. 442–470. Zbl0146.04702MR202790
  5. [5] J. Coates & S. Howson – « Euler Characteristics and Elliptic Curves II », J. Math. Soc. Japan 53 (2001), no. 1, p. 175–235. Zbl1046.11079MR1800527
  6. [6] J. Coates & R. Sujatha – « Euler-Poincaré Characteristics of Abelian Varieties », C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), no. 4, p. 309–313. Zbl0967.14029MR1713337
  7. [7] —, Galois Cohomology of Elliptic Curves, Lecture Notes at the Tata Institute of Fundamental Research, 2000. Zbl0973.11059MR1759312
  8. [8] J. Coates, R. Sujatha & J.-P. Wintenberger – « On the Euler-Poincaré Characteristics of Finite Dimensional p -adic Galois Representations », Publ. Math. IHES93 (2001), p. 107–143. Zbl1143.11021MR1863736
  9. [9] P. Cohn – Algebra, vol. 1, Wiley, 1993. Zbl0341.00002MR360046
  10. [10] J. Dixon, M. duSautoy, A. Mann D. Segal – Analytic pro-p groups, 2 nd éd., Cambridge Studies in Advanced Mathematics, vol. 61, C.U.P., 1999. Zbl0934.20001MR1720368
  11. [11] Y. Hachimori & K. Matsuno – « An Analogue of Kida’s Formula for the Selmer Group of Elliptic Curves », J. Alg. Geom.8 (1999), p. 581–601. Zbl1081.11508MR1689359
  12. [12] M. Harris – « p -adic Representations Arising from Descent on Abelian Varieties », Compositio Math. 39 (1979), no. 2, p. 177–245. Zbl0417.14034MR546966
  13. [13] S. Howson – « Euler Characteristics as Invariants of Iwasawa Modules », preprint to appear in Proc. London Math. Soc., 2002. Zbl1036.11053MR1936815
  14. [14] S. Lang & H. Trotter – Frobenius Distributions in GL 2 -extensions: Distribution of Frobenius automorphisms in GL 2 -extensions of the Rational Numbers, LNM, vol. 504, Springer Verlag, 1976. Zbl0329.12015MR568299
  15. [15] J. McConnell & J. Robson – Noncommutative Noetherian Rings, Wiley-Interscience, 1987. Zbl0644.16008MR934572
  16. [16] J. Neukirch, A. Schmidt & K. Wingberg – Cohomology of Number Fields, Grundlehren der mathematischen Wissenschaften, vol. 323, Springer Verlag, 2000. Zbl0948.11001MR1737196
  17. [17] A. Neumann – « Completed group algebras without zero divisors », Arch. Math.51 (1988), p. 496–499. Zbl0669.16007MR973723
  18. [18] Y.-H. Ochi & O. Venjakob – « On the Structure of Selmer Groups over p -adic Lie Extensions », J. Alg. Geom. 11 (2002), no. 3, p. 547–580. Zbl1041.11041MR1894938
  19. [19] A. Scholl & R. Taylor (éds.) – Galois Representations in Arithmetic and Geometry, L.M.S., C.U.P., 1998, Papers from the Durham Colloquium, 1996. 
  20. [20] J.-P. Serre – « Sur la dimension cohomologique des groupes profinis », Topology3 (1965), p. 413–420. Zbl0136.27402MR180619
  21. [21] —, « La distribution d’Euler-Poincaré d’un groupe profini », Galois Representations in Arithmetic and Geometry, 1998, See [19]. 
  22. [22] B. Totaro – « Euler Characteristics for p -adic Lie Groups », Publ. Math. IHES (1999), p. 169–225. Zbl0971.22011MR1813226
  23. [23] O. Venjakob – « Dissertation », Thèse, Heidelberg, 2000. 
  24. [24] C. Weibel – An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, 38, C.U.P., 1994. Zbl0797.18001MR1269324

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.