Une formule de Landau-Zener pour un croisement générique de codimension 2
Clotilde Fermanian Kammerer; Patrick Gérard
Séminaire Équations aux dérivées partielles (2001-2002)
- Volume: 2001-2002, page 1-14
Access Full Article
topHow to cite
topReferences
top- Y. Colin de Verdière, M. Lombardi, J. Pollet: The microlocal Landau-Zener formula. Ann. Inst. Henri Poincaré, 71, N1, (1999), p.95-127. Zbl0986.81027MR1704655
- C. Fermanian Kammerer : A non commutative Landau-Zener formula. Prépublication de l’Université Cergy-Pontoise, N 1, (2002) Zbl1050.35093
- C. Fermanian Kammerer, P.Gérard : Mesures semi-classiques et croisements de modes. Prépublications de l’Université Paris 11 (2000) A paraître au Bull. S.M.F. Zbl0996.35004
- C. Fermanian Kammerer, C. Lasser : Wigner measures and codimension 2 crossings. Preprint, N 44, Analysis, Modeling and Simulation for Multiscale Problems, Schwerpunktprogramm der Deutschen Forschunqsqemeinschaft. MR1952198
- P. Gérard, P. A. Markowich, N. J. Mauser, F. Poupaud: Homogenization Limits and Wigner Transforms. Comm. Pure Appl. Math., 50, (1997), 4, p.323-379. Zbl0881.35099MR1438151
- G. A. Hagedorn: Proof of the Landau-Zener formula in an adiabatic limit with small eigenvalue gaps. Commun. Math. Phys.136, (1991), p. 433-449. Zbl0723.35068MR1099690
- G. A. Hagedorn: Molecular Propagation through Electron Energy Level Crossings. Memoirs of the A. M. S., 111, N 536, (1994). Zbl0833.92025MR1234882
- G. A. Hagedorn, A. Joye: Landau-Zener transitions through small electronic eigenvalue gaps in the Born-Oppenheimer approximation. Ann. Inst. Henri Poincaré, 68, N1, (1998), p.85-134. Zbl0915.35090MR1618922
- L. Hörmander: The analysis of linear Partial Differential Operators III. Springer-Verlag, (1985). Zbl0601.35001MR781536
- A. Joye: Proof of the Landau-Zener formula. Asymptotic Analysis 9, (1994), p.209-258. Zbl0814.35109MR1295294
- L. Landau: Collected papers of L. Landau, Pergamon Press, (1965).
- L. Miller: Propagation d’onde semi-classiques à travers une interface et mesures 2-microlocales. Thèse de l’Ecole Polytechnique, (1996).
- H. Spohn, S. Teufel: Adiabatic decoupling and time-dependent Born-Oppenheimer theory, Commun. Math. Phys. 224, (2001), pp. 113-132. Zbl1017.81014MR1868994
- C. Zener: Non-adiabatic crossing of energy levels, Proc. Roy. Soc. Lond.137, (1932), p.696-702. Zbl0005.18605