Landau-Zener transitions through small electronic eigenvalue gaps in the Born-Oppenheimer approximation
George A. Hagedorn; Alain Joye
Annales de l'I.H.P. Physique théorique (1998)
- Volume: 68, Issue: 1, page 85-134
- ISSN: 0246-0211
Access Full Article
topHow to cite
topHagedorn, George A., and Joye, Alain. "Landau-Zener transitions through small electronic eigenvalue gaps in the Born-Oppenheimer approximation." Annales de l'I.H.P. Physique théorique 68.1 (1998): 85-134. <http://eudml.org/doc/76780>.
@article{Hagedorn1998,
author = {Hagedorn, George A., Joye, Alain},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {avoided crossings; transition probability; wave packets},
language = {eng},
number = {1},
pages = {85-134},
publisher = {Gauthier-Villars},
title = {Landau-Zener transitions through small electronic eigenvalue gaps in the Born-Oppenheimer approximation},
url = {http://eudml.org/doc/76780},
volume = {68},
year = {1998},
}
TY - JOUR
AU - Hagedorn, George A.
AU - Joye, Alain
TI - Landau-Zener transitions through small electronic eigenvalue gaps in the Born-Oppenheimer approximation
JO - Annales de l'I.H.P. Physique théorique
PY - 1998
PB - Gauthier-Villars
VL - 68
IS - 1
SP - 85
EP - 134
LA - eng
KW - avoided crossings; transition probability; wave packets
UR - http://eudml.org/doc/76780
ER -
References
top- [1] J.D. Cole. Perturbation Methods in Applied MathematicsWaltham, Mass., Toronto, London: Blaisdell1968. Zbl0162.12602MR246537
- [2] J.-M. Combes, On the Born-Oppenheimer Approximation. In: International Symposium on Mathematical Problems in Theoretical Physics. ed. by H. Araki. Berlin, Heidelberg, New York: Springer1975. MR673617
- [3] J.-M. Combes, The Born-Oppenheimer Approximation. In: The Schrödinger Equation. ed. by W. Thirring, P. Urban. Wien, New York: Springer1977. Zbl0372.47026MR673617
- [4] J.-M. Combes, P. Duclos and R. Seiler, The Born-Oppenheimer Approximation. In Rigorous Atomic and Molecular Physics. ed. by G. Velo, A. Wightman. New York: Plenum1981.
- [5] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products. New York: Academic Press1980. Zbl0521.33001
- [6] G.A. Hagedorn, A Time-Dependent Born-Oppenheimer Approximation. Commun. Math. Phys., Vol. 77, 1980, pp. 1-19. Zbl0448.70013MR588684
- [7] G.A. Hagedorn, Semiclassical Quantum Mechanics IV: Large Order Asymptotics and More General States in More than One Dimension. Ann. Inst. H. Poincaré Sect. A, Vol. 42, 1985, pp. 363-374. Zbl0900.81053MR801234
- [8] G.A. Hagedorn, High Order Corrections to the Time-Dependent Born-Oppenheimer Approximation I: Smooth Potentials. Ann. Math., Vol. 124, 1986, pp. 571-590, Erratum, Vol. 126, 1987, p. 219. Zbl0619.35094MR866709
- [9] G.A. Hagedorn, High Order Corrections to the Time-Independent Born-Oppenheimer Approximation I: Smooth Potentials. Ann. Inst. H. Poincaré Sect. A, Vol. 47, 1987, pp. 1-19. Zbl0621.41012MR912753
- [10] G.A. Hagedorn, High Order Corrections to the Time-Independent Born-Oppenheimer Approximation II: Diatomic Coulomb Systems. Commun. Math. Phys., Vol. 116, 1988, pp. 23-44. MR937358
- [11] G.A. Hagedorn, High Order Corrections to the Time-Dependent Born-Oppenheimer Approximation II: Coulomb Systems. Commun. Math. Phys., Vol. 117, 1988, pp. 387-403. MR953829
- [12] G.A. Hagedorn, Multiple Scales and the Time-Independent Born-Oppenheimer Approximation. In: Differential Equations and Applications. ed. by R. Aftabizadeh. New York: Marcel Dekker1989. Zbl0751.47033MR1026169
- [13] G.A. Hagedorn, Electron Energy Level Crossings in the Time-Dependent Bom–Oppenheimer Approximation. Theor. Chimica Acta., Vol. 77, 1990, pp. 163-190.
- [14] G.A. Hagedorn, Proof of the Landau-Zener Formula in an Adiabatic Limit with Small Eigenvalue Gaps. Commun. Math. Phys., Vol. 136, 1991, pp. 433-449. Zbl0723.35068MR1099690
- [15] G.A. Hagedorn, Time-Reversal Invariance and the Time-Dependent Born-Oppenheimer Approximation. In Forty More Years of Ramifications: Spectral Asymptotics and Its Applications, (Discourses in Mathematics and Its Applications, No. 1). ed. by S. A. Fulling and F. J. Narcowich. College Station: Texas A & M University Mathematics Department1992. Zbl0796.47053
- [16] G.A. Hagedorn, Molecular Propagation Through Electron Energy Level Crossings, Memoirs Amer. Math. Soc., Vol. 536, 1994. Zbl0833.92025MR1234882
- [17] G.A. Hagedorn, Effects of Electron Energy Level Crossings on Molecular Propagation. Differential Equations and Mathematical Physics. Proceedings of the International Conference. Univ. of Alabama at Birmingham, March 13-17, 1994. ed by I. Knowles. 1995, pp. 85-95. Zbl0929.35125MR1703574
- [18] G.A. Hagedorn, Classification and Normal Forms for Avoided Crossings of Quantum Mechanical Energy Levels. 1995 Preprint, Virginia Polytechnic Institute and State University. Zbl0956.81014MR1620277
- [19] G.A. Hagedorn and A. Joye, Molecular Propagation through Small Avoided Crossings of Electron Energy Levels. 1996 Preprint, Virginia Polytechnic Institute and State University. Zbl0965.81138MR1668071
- [20] J.S. Herrin, The Born-Oppenheimer Approximation: Straight-Up and with a Twist. Ph. D. Dissertation, University of Virginia, 1990. Zbl0879.47046
- [21] A. Joye, Non-trivial Prefactors in Adiabatic Transition Probabilities Induced by High Order Complex Degeneracies. J. Phys. A, Vol. 26, 1993, pp. 6517-6540. MR1253052
- [22] A. Joye, Proof of the Landau-Zener Formula. Asymptotic Analysis, Vol. 9, 1994, pp. 209-258. Zbl0814.35109MR1295294
- [23] A. Joye, Exponential Asymptotics in a Singular Limit for n-Level Scattering Systems. Preprint CNRSMarseille CPT-95/P.3216, SIAM J. Math. Anal. (to appear). Zbl0991.34071MR1443614
- [24] A. Joye, H. Kunz and C.-E. Pfister, Exponential Decay and Geometric Aspect of Transition Probabilities in the Adiabatic Limit. Ann. Phys., Vol. 208, 1991, pp. 299-332. Zbl0875.60022MR1110431
- [25] A. Joye, G. Mileti and C-E. Paster, Interferences in Adiabatic Transition Probabilities Mediated by Stokes Lines. Phys. Rev. A, Vol. 44, 1991, pp. 4280-4295.
- [26] A. Joye and C-E.. Pfister, Full Asymptotic Expansion of Transition Probabilities in the Adiabatic Limit. J. Phys. A., Vol. 24, 1991, pp. 753-766. Zbl0722.60086MR1104171
- [27] A. Joye and C-E.. Pfister, Absence of Geometrical Correction to the Landau-Zener Formula. Phvs. Lett. A, Vol. 169, 1992, pp. 62-66.
- [28] A. Joye and C-E.. Pfister, Superadiabatic Evolution and Adiabatic Transition Probability between Two Non-Degenerate Levels Isolated in the Spectrum. J. Math. Phys., Vol. 34, 1993, pp. 454-479. Zbl0776.35056MR1201014
- [29] A. Joye, and C-E.. Pfister, Non-abelian Geometric Effect in Quantum Adiabatic Transitions. Phys. Rev. A, Vol. 48, 1993, pp. 2598-2608. MR1240911
- [30] A. Joye and C-E.. Pfister, Quantum Adiabatic Evolution, in Leuven Conference Proceedings; On the Three Levels Micro–Meso– and Macro-Approaches in Physics, M. Fannes, C. Meas, A. Verbeure eds., Plenum, New York, 1994, pp. 139-148. Zbl0884.47053
- [31 ] A. Joye and C-E.. Pfister, Semi-Classical Asymptotics beyond All Orders for Simple Scattering Systems, SIAM J. Math. Anal., Vol. 26, 1995, pp. 944-977. Zbl0830.34047MR1338369
- [32] A. Kargol, The Infinite Time Limit for the Time-Dependent Born-Oppenheimer Approximation. Commun. Math. Phys., Vol. 166, 1994, pp. 129-148. Zbl0821.47051MR1309544
- [33] T. Kato, On the Adiabatic Theorem in Quantum Mechanics. J. Phys. Soc. Jpn., Vol. 5, 1950, pp. 435-439.
- [34] M. Klein, On the Mathematical Theory of Predissociation. Ann. Phys., Vol. 178, 1987, pp. 48-73. Zbl0649.35024MR913151
- [35] M. Klein, A. Martinez, R. Seiler and X.P. Wang, On the Born-Oppenheimer Expansion for Polyatomic Molecules. Commun. Math. Phys., Vol. 143, 1992, pp. 607-639. Zbl0754.35099MR1145603
- [36] M. Klein, A. Martinez and X.P. Wang, On the Born-Oppenheimer Approximation of Wave Operators in Molecular Scattering Theory. Université de Nantes preprint, 1992. Zbl0778.35088
- [37] Ph.A. Martin and G. Nenciu, Semi-Classical Inelastic S-Matrix for One-Dimensional N-States Systems, Rev. Math. Phys., Vol. 7, 1995, pp. 193-242. Zbl0835.34098MR1317340
- [38] A. Martinez, Développements Asymptotiques et Effet Tunnel dans l'Approximation de Born-Oppenheimer. Ann. Inst. H. Poincaré Sect. A, Vol. 50, 1989, pp. 239-257. Zbl0689.35063MR1017965
- [39] A. Martinez, Développements Asymptotiques dans l'Approximation de Bom–Oppenheimer. Journées E. D. P. de St. Jean-de-Monts (1988). Zbl0699.35209
- [40] A. Martinez, Resonances dans l'Approximation de Born-Oppenheimer I. J. Diff. Eq., Vol. 91. 1991, pp. 204-234. Zbl0737.35046MR1111174
- [41 ] A. Martinez, Resonances dans l'Approximation de Born-Oppenheimer II. Largeur de Résonances. Commun. Math. Phys., Vol. 135, 1991, pp. 517-530. Zbl0737.35047MR1091576
- [42] P. Pettersson, WKB Expansions for Systems of Schrödinger Operators with Crossing Eigenvalues. University of LundPhD Thesis, 1993. Zbl0885.35104
Citations in EuDML Documents
top- Yves Colin de Verdière, Maurice Lombardi, Joël Pollet, The microlocal Landau-Zener formula
- Clotilde Fermanian Kammerer, Patrick Gérard, Une formule de Landau-Zener pour un croisement générique de codimension 2
- Yves Colin de Verdière, Équations de Schrödinger couplées
- Yves Colin de Verdière, The level crossing problem in semi-classical analysis I. The symmetric case
- Clotilde Fermanian-Kammerer, Patrick Gérard, Mesures semi-classiques et croisement de modes
- Clotilde Fermanian-Kammerer, Patrick Gérard, Mesures semi-classiques et croisement de modes
- M. Rouleux, Résonances de Feschbach en limite semi-classique
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.