Landau-Zener transitions through small electronic eigenvalue gaps in the Born-Oppenheimer approximation

George A. Hagedorn; Alain Joye

Annales de l'I.H.P. Physique théorique (1998)

  • Volume: 68, Issue: 1, page 85-134
  • ISSN: 0246-0211

How to cite

top

Hagedorn, George A., and Joye, Alain. "Landau-Zener transitions through small electronic eigenvalue gaps in the Born-Oppenheimer approximation." Annales de l'I.H.P. Physique théorique 68.1 (1998): 85-134. <http://eudml.org/doc/76780>.

@article{Hagedorn1998,
author = {Hagedorn, George A., Joye, Alain},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {avoided crossings; transition probability; wave packets},
language = {eng},
number = {1},
pages = {85-134},
publisher = {Gauthier-Villars},
title = {Landau-Zener transitions through small electronic eigenvalue gaps in the Born-Oppenheimer approximation},
url = {http://eudml.org/doc/76780},
volume = {68},
year = {1998},
}

TY - JOUR
AU - Hagedorn, George A.
AU - Joye, Alain
TI - Landau-Zener transitions through small electronic eigenvalue gaps in the Born-Oppenheimer approximation
JO - Annales de l'I.H.P. Physique théorique
PY - 1998
PB - Gauthier-Villars
VL - 68
IS - 1
SP - 85
EP - 134
LA - eng
KW - avoided crossings; transition probability; wave packets
UR - http://eudml.org/doc/76780
ER -

References

top
  1. [1] J.D. Cole. Perturbation Methods in Applied MathematicsWaltham, Mass., Toronto, London: Blaisdell1968. Zbl0162.12602MR246537
  2. [2] J.-M. Combes, On the Born-Oppenheimer Approximation. In: International Symposium on Mathematical Problems in Theoretical Physics. ed. by H. Araki. Berlin, Heidelberg, New York: Springer1975. MR673617
  3. [3] J.-M. Combes, The Born-Oppenheimer Approximation. In: The Schrödinger Equation. ed. by W. Thirring, P. Urban. Wien, New York: Springer1977. Zbl0372.47026MR673617
  4. [4] J.-M. Combes, P. Duclos and R. Seiler, The Born-Oppenheimer Approximation. In Rigorous Atomic and Molecular Physics. ed. by G. Velo, A. Wightman. New York: Plenum1981. 
  5. [5] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products. New York: Academic Press1980. Zbl0521.33001
  6. [6] G.A. Hagedorn, A Time-Dependent Born-Oppenheimer Approximation. Commun. Math. Phys., Vol. 77, 1980, pp. 1-19. Zbl0448.70013MR588684
  7. [7] G.A. Hagedorn, Semiclassical Quantum Mechanics IV: Large Order Asymptotics and More General States in More than One Dimension. Ann. Inst. H. Poincaré Sect. A, Vol. 42, 1985, pp. 363-374. Zbl0900.81053MR801234
  8. [8] G.A. Hagedorn, High Order Corrections to the Time-Dependent Born-Oppenheimer Approximation I: Smooth Potentials. Ann. Math., Vol. 124, 1986, pp. 571-590, Erratum, Vol. 126, 1987, p. 219. Zbl0619.35094MR866709
  9. [9] G.A. Hagedorn, High Order Corrections to the Time-Independent Born-Oppenheimer Approximation I: Smooth Potentials. Ann. Inst. H. Poincaré Sect. A, Vol. 47, 1987, pp. 1-19. Zbl0621.41012MR912753
  10. [10] G.A. Hagedorn, High Order Corrections to the Time-Independent Born-Oppenheimer Approximation II: Diatomic Coulomb Systems. Commun. Math. Phys., Vol. 116, 1988, pp. 23-44. MR937358
  11. [11] G.A. Hagedorn, High Order Corrections to the Time-Dependent Born-Oppenheimer Approximation II: Coulomb Systems. Commun. Math. Phys., Vol. 117, 1988, pp. 387-403. MR953829
  12. [12] G.A. Hagedorn, Multiple Scales and the Time-Independent Born-Oppenheimer Approximation. In: Differential Equations and Applications. ed. by R. Aftabizadeh. New York: Marcel Dekker1989. Zbl0751.47033MR1026169
  13. [13] G.A. Hagedorn, Electron Energy Level Crossings in the Time-Dependent Bom–Oppenheimer Approximation. Theor. Chimica Acta., Vol. 77, 1990, pp. 163-190. 
  14. [14] G.A. Hagedorn, Proof of the Landau-Zener Formula in an Adiabatic Limit with Small Eigenvalue Gaps. Commun. Math. Phys., Vol. 136, 1991, pp. 433-449. Zbl0723.35068MR1099690
  15. [15] G.A. Hagedorn, Time-Reversal Invariance and the Time-Dependent Born-Oppenheimer Approximation. In Forty More Years of Ramifications: Spectral Asymptotics and Its Applications, (Discourses in Mathematics and Its Applications, No. 1). ed. by S. A. Fulling and F. J. Narcowich. College Station: Texas A & M University Mathematics Department1992. Zbl0796.47053
  16. [16] G.A. Hagedorn, Molecular Propagation Through Electron Energy Level Crossings, Memoirs Amer. Math. Soc., Vol. 536, 1994. Zbl0833.92025MR1234882
  17. [17] G.A. Hagedorn, Effects of Electron Energy Level Crossings on Molecular Propagation. Differential Equations and Mathematical Physics. Proceedings of the International Conference. Univ. of Alabama at Birmingham, March 13-17, 1994. ed by I. Knowles. 1995, pp. 85-95. Zbl0929.35125MR1703574
  18. [18] G.A. Hagedorn, Classification and Normal Forms for Avoided Crossings of Quantum Mechanical Energy Levels. 1995 Preprint, Virginia Polytechnic Institute and State University. Zbl0956.81014MR1620277
  19. [19] G.A. Hagedorn and A. Joye, Molecular Propagation through Small Avoided Crossings of Electron Energy Levels. 1996 Preprint, Virginia Polytechnic Institute and State University. Zbl0965.81138MR1668071
  20. [20] J.S. Herrin, The Born-Oppenheimer Approximation: Straight-Up and with a Twist. Ph. D. Dissertation, University of Virginia, 1990. Zbl0879.47046
  21. [21] A. Joye, Non-trivial Prefactors in Adiabatic Transition Probabilities Induced by High Order Complex Degeneracies. J. Phys. A, Vol. 26, 1993, pp. 6517-6540. MR1253052
  22. [22] A. Joye, Proof of the Landau-Zener Formula. Asymptotic Analysis, Vol. 9, 1994, pp. 209-258. Zbl0814.35109MR1295294
  23. [23] A. Joye, Exponential Asymptotics in a Singular Limit for n-Level Scattering Systems. Preprint CNRSMarseille CPT-95/P.3216, SIAM J. Math. Anal. (to appear). Zbl0991.34071MR1443614
  24. [24] A. Joye, H. Kunz and C.-E. Pfister, Exponential Decay and Geometric Aspect of Transition Probabilities in the Adiabatic Limit. Ann. Phys., Vol. 208, 1991, pp. 299-332. Zbl0875.60022MR1110431
  25. [25] A. Joye, G. Mileti and C-E. Paster, Interferences in Adiabatic Transition Probabilities Mediated by Stokes Lines. Phys. Rev. A, Vol. 44, 1991, pp. 4280-4295. 
  26. [26] A. Joye and C-E.. Pfister, Full Asymptotic Expansion of Transition Probabilities in the Adiabatic Limit. J. Phys. A., Vol. 24, 1991, pp. 753-766. Zbl0722.60086MR1104171
  27. [27] A. Joye and C-E.. Pfister, Absence of Geometrical Correction to the Landau-Zener Formula. Phvs. Lett. A, Vol. 169, 1992, pp. 62-66. 
  28. [28] A. Joye and C-E.. Pfister, Superadiabatic Evolution and Adiabatic Transition Probability between Two Non-Degenerate Levels Isolated in the Spectrum. J. Math. Phys., Vol. 34, 1993, pp. 454-479. Zbl0776.35056MR1201014
  29. [29] A. Joye, and C-E.. Pfister, Non-abelian Geometric Effect in Quantum Adiabatic Transitions. Phys. Rev. A, Vol. 48, 1993, pp. 2598-2608. MR1240911
  30. [30] A. Joye and C-E.. Pfister, Quantum Adiabatic Evolution, in Leuven Conference Proceedings; On the Three Levels Micro–Meso– and Macro-Approaches in Physics, M. Fannes, C. Meas, A. Verbeure eds., Plenum, New York, 1994, pp. 139-148. Zbl0884.47053
  31. [31 ] A. Joye and C-E.. Pfister, Semi-Classical Asymptotics beyond All Orders for Simple Scattering Systems, SIAM J. Math. Anal., Vol. 26, 1995, pp. 944-977. Zbl0830.34047MR1338369
  32. [32] A. Kargol, The Infinite Time Limit for the Time-Dependent Born-Oppenheimer Approximation. Commun. Math. Phys., Vol. 166, 1994, pp. 129-148. Zbl0821.47051MR1309544
  33. [33] T. Kato, On the Adiabatic Theorem in Quantum Mechanics. J. Phys. Soc. Jpn., Vol. 5, 1950, pp. 435-439. 
  34. [34] M. Klein, On the Mathematical Theory of Predissociation. Ann. Phys., Vol. 178, 1987, pp. 48-73. Zbl0649.35024MR913151
  35. [35] M. Klein, A. Martinez, R. Seiler and X.P. Wang, On the Born-Oppenheimer Expansion for Polyatomic Molecules. Commun. Math. Phys., Vol. 143, 1992, pp. 607-639. Zbl0754.35099MR1145603
  36. [36] M. Klein, A. Martinez and X.P. Wang, On the Born-Oppenheimer Approximation of Wave Operators in Molecular Scattering Theory. Université de Nantes preprint, 1992. Zbl0778.35088
  37. [37] Ph.A. Martin and G. Nenciu, Semi-Classical Inelastic S-Matrix for One-Dimensional N-States Systems, Rev. Math. Phys., Vol. 7, 1995, pp. 193-242. Zbl0835.34098MR1317340
  38. [38] A. Martinez, Développements Asymptotiques et Effet Tunnel dans l'Approximation de Born-Oppenheimer. Ann. Inst. H. Poincaré Sect. A, Vol. 50, 1989, pp. 239-257. Zbl0689.35063MR1017965
  39. [39] A. Martinez, Développements Asymptotiques dans l'Approximation de Bom–Oppenheimer. Journées E. D. P. de St. Jean-de-Monts (1988). Zbl0699.35209
  40. [40] A. Martinez, Resonances dans l'Approximation de Born-Oppenheimer I. J. Diff. Eq., Vol. 91. 1991, pp. 204-234. Zbl0737.35046MR1111174
  41. [41 ] A. Martinez, Resonances dans l'Approximation de Born-Oppenheimer II. Largeur de Résonances. Commun. Math. Phys., Vol. 135, 1991, pp. 517-530. Zbl0737.35047MR1091576
  42. [42] P. Pettersson, WKB Expansions for Systems of Schrödinger Operators with Crossing Eigenvalues. University of LundPhD Thesis, 1993. Zbl0885.35104

Citations in EuDML Documents

top
  1. Yves Colin de Verdière, Maurice Lombardi, Joël Pollet, The microlocal Landau-Zener formula
  2. Clotilde Fermanian Kammerer, Patrick Gérard, Une formule de Landau-Zener pour un croisement générique de codimension 2
  3. Yves Colin de Verdière, Équations de Schrödinger couplées
  4. Yves Colin de Verdière, The level crossing problem in semi-classical analysis I. The symmetric case
  5. Clotilde Fermanian-Kammerer, Patrick Gérard, Mesures semi-classiques et croisement de modes
  6. Clotilde Fermanian-Kammerer, Patrick Gérard, Mesures semi-classiques et croisement de modes
  7. M. Rouleux, Résonances de Feschbach en limite semi-classique

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.