The microlocal Landau-Zener formula
Yves Colin de Verdière; Maurice Lombardi; Joël Pollet
Annales de l'I.H.P. Physique théorique (1999)
- Volume: 71, Issue: 1, page 95-127
- ISSN: 0246-0211
Access Full Article
topHow to cite
topColin de Verdière, Yves, Lombardi, Maurice, and Pollet, Joël. "The microlocal Landau-Zener formula." Annales de l'I.H.P. Physique théorique 71.1 (1999): 95-127. <http://eudml.org/doc/76832>.
@article{ColindeVerdière1999,
author = {Colin de Verdière, Yves, Lombardi, Maurice, Pollet, Joël},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {adiabatic approximation; Schrödinger operators},
language = {eng},
number = {1},
pages = {95-127},
publisher = {Gauthier-Villars},
title = {The microlocal Landau-Zener formula},
url = {http://eudml.org/doc/76832},
volume = {71},
year = {1999},
}
TY - JOUR
AU - Colin de Verdière, Yves
AU - Lombardi, Maurice
AU - Pollet, Joël
TI - The microlocal Landau-Zener formula
JO - Annales de l'I.H.P. Physique théorique
PY - 1999
PB - Gauthier-Villars
VL - 71
IS - 1
SP - 95
EP - 127
LA - eng
KW - adiabatic approximation; Schrödinger operators
UR - http://eudml.org/doc/76832
ER -
References
top- [1] J.E. Avron and A. Elgart, An adiabatic theorem without a gap condition, in: Operator Theory: Advances and Applic., Birkhaüser, 1999, pp. 3-12. Zbl0971.81038MR1708784
- [2] M. Born and V. Fock, Beweis des Adiabatensatzes, Z. Phys.51 (1928) 165-169. Zbl54.0994.03JFM54.0994.03
- [3] P.J. Braam and J.J. Duistermaat, Normal forms of real symmetric systems with multiplicity, Indag. Math.4 (1993) 407-421. Zbl0802.35176MR1252985
- [4] M. Carré, A. Zgainsky, M. Gaillard, M. Nouh et M. Lombardi, Détermination des populations relatives des sous-niveaux magnétiques du niveau 4 1 D de HeI excité par impact d'ions lourds, Journal de Physique42 (1981) 235-246.
- [5] Y. Colin De Verdière, Limite adiabatique en présence de croisements évités et phases géométriques, 1998, en préparation.
- [6] Y. Colin De Verdière et B. Parisse, Equilibre instable en regime semi-classique : I - Concentration microlocale, Commun. PDE 19 (1994) 1535-1563. Zbl0819.35116MR1294470
- [7] Y. Colin De Verdière et B. Parisse, Equilibre instable en régime semi-classique : II - Conditions de Bohr-Sommerfeld, Ann. Inst. Henri Poincaré (Physique théorique) 61 (1994) 347-367. Zbl0845.35076MR1311072
- [8] Y. Colin De Verdière et B. Parisse, Singular Boar-Sommerfeld roles, Commun. Math. Phys., to appear. Zbl1157.81310MR1712567
- [9] Y. Colin De Verdière et J. Vey, Le lemme de Morse isochore, Topology18 (1979) 283-293. Zbl0441.58003MR551010
- [10] V. Guillemin and G. Uhlmann, Oscillatory integrals with singular symbols, Duke Math. J.48 (1981) 251-267. Zbl0462.58030MR610185
- [11] G. Hagedorn, Adiabatic expansions near eigenvalue crossings, Ann. Phys.196 (1989) 278-295. Zbl0875.47002MR1027662
- [12] G.A. Hagedorn, Proof of the Landau-Zener formula in an adiabatic limit with small eigenvalue gap, Commun. Math. Phys.136 (1991) 433-449. Zbl0723.35068MR1099690
- [13] G.A. Hagedorn, Molecular propagation through electron energy level crossings, Memoirs of the AMS536 (1994). Zbl0833.92025MR1234882
- [14] G.A. Hagedorn and A. Joye, Landau-Zener transitions through small electronic eigenvalues gaps in the Born-Oppenheimer approximation, Ann. Inst. Henri Poincaré (Physique théorique)68 (1998) 85-134. Zbl0915.35090MR1618922
- [15] A. Joye, Proof of the Landau-Zener formula, Asymptotic Analysis9 (1994) 209- 258. Zbl0814.35109MR1295294
- [16] A. Joye, Exponential asymptotics in a singular limit for n-level scattering systems, SIAM J. Math. Anal.28 (1997) 669-703. Zbl0991.34071MR1443614
- [17] S.G. Krein, Linear Differential Equations in Banach Space, Translations of Math. Monographs, Amer. Math. Soc., 1971. MR342804
- [18] L. Landau, Collected Papers of L. Landau, Pergamon Press, 1965.
- [19] P. Martin and G. Nenciu, Semi-classical inelastic S-matrix for one-dimensional N-states systems, Rev. Math. Phys.7 (1995) 193-242. Zbl0835.34098MR1317340
- [20] R. Melrose and G. Uhlmann, Lagrangian intersection and the Cauchy problem, Comm. Pure Appl. Math.32 (1979) 483-519. Zbl0396.58006MR528633
- [21] A. Messiah, Mecanique Quantique, Dunod, 1969. MR129304
- [22] J. Pollet, Analyse semi-classique d'un système d'équations de Schrödinger couplées : formule de Landau-Zener. Thèse de l'université de Grenoble1, Octobre 1997.
- [23] D. Robert, Autour de l'Approximation Semi-Classique, Birkhäuser, 1987. Zbl0621.35001MR897108
- [24] H. Rosenthal, Nonadiabatic effects in slow atomic collisions. I. He+ + He, Phys. Rev. A 4 (1971) 1030-1042.
- [25] M. Rouleux, Feshbach resonances in the semi-classical limit, Preprint CPT, 1997.
- [26] E.C.G. Stueckelberg, Helv. Phys. Acta5 (1932) 369. Zbl0006.09006
- [27] M. Taylor, Pseudo-differential Operators, Princeton, 1981.
- [28] W. Wasow, Asymptotic Expansions for Ordinary Differential Equations, Wiley, New York, 1985. Zbl0169.10903MR203188
- [29] C. Zener, Non-adiabatic crossing of energy levels, Proc. Roy. Soc. Lond.137 (1932) 696-702. Zbl0005.18605
Citations in EuDML Documents
top- Yves Colin de Verdière, The level crossing problem in semi-classical analysis. II. The Hermitian case
- Clotilde Fermanian Kammerer, Patrick Gérard, Une formule de Landau-Zener pour un croisement générique de codimension 2
- Gianluca Panati, Herbert Spohn, Stefan Teufel, The time-dependent Born-Oppenheimer approximation
- Yves Colin de Verdière, The level crossing problem in semi-classical analysis I. The symmetric case
- Clotilde Fermanian-Kammerer, Patrick Gérard, Mesures semi-classiques et croisement de modes
- Olivier Lablée, Sur le spectre semi-classique d’un système intégrable de dimension 1 autour d’une singularité hyperbolique
- Clotilde Fermanian-Kammerer, Patrick Gérard, Mesures semi-classiques et croisement de modes
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.