The microlocal Landau-Zener formula

Yves Colin de Verdière; Maurice Lombardi; Joël Pollet

Annales de l'I.H.P. Physique théorique (1999)

  • Volume: 71, Issue: 1, page 95-127
  • ISSN: 0246-0211

How to cite

top

Colin de Verdière, Yves, Lombardi, Maurice, and Pollet, Joël. "The microlocal Landau-Zener formula." Annales de l'I.H.P. Physique théorique 71.1 (1999): 95-127. <http://eudml.org/doc/76832>.

@article{ColindeVerdière1999,
author = {Colin de Verdière, Yves, Lombardi, Maurice, Pollet, Joël},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {adiabatic approximation; Schrödinger operators},
language = {eng},
number = {1},
pages = {95-127},
publisher = {Gauthier-Villars},
title = {The microlocal Landau-Zener formula},
url = {http://eudml.org/doc/76832},
volume = {71},
year = {1999},
}

TY - JOUR
AU - Colin de Verdière, Yves
AU - Lombardi, Maurice
AU - Pollet, Joël
TI - The microlocal Landau-Zener formula
JO - Annales de l'I.H.P. Physique théorique
PY - 1999
PB - Gauthier-Villars
VL - 71
IS - 1
SP - 95
EP - 127
LA - eng
KW - adiabatic approximation; Schrödinger operators
UR - http://eudml.org/doc/76832
ER -

References

top
  1. [1] J.E. Avron and A. Elgart, An adiabatic theorem without a gap condition, in: Operator Theory: Advances and Applic., Birkhaüser, 1999, pp. 3-12. Zbl0971.81038MR1708784
  2. [2] M. Born and V. Fock, Beweis des Adiabatensatzes, Z. Phys.51 (1928) 165-169. Zbl54.0994.03JFM54.0994.03
  3. [3] P.J. Braam and J.J. Duistermaat, Normal forms of real symmetric systems with multiplicity, Indag. Math.4 (1993) 407-421. Zbl0802.35176MR1252985
  4. [4] M. Carré, A. Zgainsky, M. Gaillard, M. Nouh et M. Lombardi, Détermination des populations relatives des sous-niveaux magnétiques du niveau 4 1 D de HeI excité par impact d'ions lourds, Journal de Physique42 (1981) 235-246. 
  5. [5] Y. Colin De Verdière, Limite adiabatique en présence de croisements évités et phases géométriques, 1998, en préparation. 
  6. [6] Y. Colin De Verdière et B. Parisse, Equilibre instable en regime semi-classique : I - Concentration microlocale, Commun. PDE 19 (1994) 1535-1563. Zbl0819.35116MR1294470
  7. [7] Y. Colin De Verdière et B. Parisse, Equilibre instable en régime semi-classique : II - Conditions de Bohr-Sommerfeld, Ann. Inst. Henri Poincaré (Physique théorique) 61 (1994) 347-367. Zbl0845.35076MR1311072
  8. [8] Y. Colin De Verdière et B. Parisse, Singular Boar-Sommerfeld roles, Commun. Math. Phys., to appear. Zbl1157.81310MR1712567
  9. [9] Y. Colin De Verdière et J. Vey, Le lemme de Morse isochore, Topology18 (1979) 283-293. Zbl0441.58003MR551010
  10. [10] V. Guillemin and G. Uhlmann, Oscillatory integrals with singular symbols, Duke Math. J.48 (1981) 251-267. Zbl0462.58030MR610185
  11. [11] G. Hagedorn, Adiabatic expansions near eigenvalue crossings, Ann. Phys.196 (1989) 278-295. Zbl0875.47002MR1027662
  12. [12] G.A. Hagedorn, Proof of the Landau-Zener formula in an adiabatic limit with small eigenvalue gap, Commun. Math. Phys.136 (1991) 433-449. Zbl0723.35068MR1099690
  13. [13] G.A. Hagedorn, Molecular propagation through electron energy level crossings, Memoirs of the AMS536 (1994). Zbl0833.92025MR1234882
  14. [14] G.A. Hagedorn and A. Joye, Landau-Zener transitions through small electronic eigenvalues gaps in the Born-Oppenheimer approximation, Ann. Inst. Henri Poincaré (Physique théorique)68 (1998) 85-134. Zbl0915.35090MR1618922
  15. [15] A. Joye, Proof of the Landau-Zener formula, Asymptotic Analysis9 (1994) 209- 258. Zbl0814.35109MR1295294
  16. [16] A. Joye, Exponential asymptotics in a singular limit for n-level scattering systems, SIAM J. Math. Anal.28 (1997) 669-703. Zbl0991.34071MR1443614
  17. [17] S.G. Krein, Linear Differential Equations in Banach Space, Translations of Math. Monographs, Amer. Math. Soc., 1971. MR342804
  18. [18] L. Landau, Collected Papers of L. Landau, Pergamon Press, 1965. 
  19. [19] P. Martin and G. Nenciu, Semi-classical inelastic S-matrix for one-dimensional N-states systems, Rev. Math. Phys.7 (1995) 193-242. Zbl0835.34098MR1317340
  20. [20] R. Melrose and G. Uhlmann, Lagrangian intersection and the Cauchy problem, Comm. Pure Appl. Math.32 (1979) 483-519. Zbl0396.58006MR528633
  21. [21] A. Messiah, Mecanique Quantique, Dunod, 1969. MR129304
  22. [22] J. Pollet, Analyse semi-classique d'un système d'équations de Schrödinger couplées : formule de Landau-Zener. Thèse de l'université de Grenoble1, Octobre 1997. 
  23. [23] D. Robert, Autour de l'Approximation Semi-Classique, Birkhäuser, 1987. Zbl0621.35001MR897108
  24. [24] H. Rosenthal, Nonadiabatic effects in slow atomic collisions. I. He+ + He, Phys. Rev. A 4 (1971) 1030-1042. 
  25. [25] M. Rouleux, Feshbach resonances in the semi-classical limit, Preprint CPT, 1997. 
  26. [26] E.C.G. Stueckelberg, Helv. Phys. Acta5 (1932) 369. Zbl0006.09006
  27. [27] M. Taylor, Pseudo-differential Operators, Princeton, 1981. 
  28. [28] W. Wasow, Asymptotic Expansions for Ordinary Differential Equations, Wiley, New York, 1985. Zbl0169.10903MR203188
  29. [29] C. Zener, Non-adiabatic crossing of energy levels, Proc. Roy. Soc. Lond.137 (1932) 696-702. Zbl0005.18605

Citations in EuDML Documents

top
  1. Yves Colin de Verdière, The level crossing problem in semi-classical analysis. II. The Hermitian case
  2. Clotilde Fermanian Kammerer, Patrick Gérard, Une formule de Landau-Zener pour un croisement générique de codimension 2
  3. Gianluca Panati, Herbert Spohn, Stefan Teufel, The time-dependent Born-Oppenheimer approximation
  4. Yves Colin de Verdière, The level crossing problem in semi-classical analysis I. The symmetric case
  5. Clotilde Fermanian-Kammerer, Patrick Gérard, Mesures semi-classiques et croisement de modes
  6. Olivier Lablée, Sur le spectre semi-classique d’un système intégrable de dimension 1 autour d’une singularité hyperbolique
  7. Clotilde Fermanian-Kammerer, Patrick Gérard, Mesures semi-classiques et croisement de modes

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.