Interaction des tourbillons dans les écoulements plans faiblement visqueux
- [1] Université de Grenoble I Institut Fourier, UMR CNRS 5582 BP 74 F-38402 Saint-Martin-d’Hères
Séminaire Équations aux dérivées partielles (2007-2008)
- Volume: 2007-2008, page 1-16
Access Full Article
topHow to cite
topGallay, Thierry. "Interaction des tourbillons dans les écoulements plans faiblement visqueux." Séminaire Équations aux dérivées partielles 2007-2008 (2007-2008): 1-16. <http://eudml.org/doc/11169>.
@article{Gallay2007-2008,
affiliation = {Université de Grenoble I Institut Fourier, UMR CNRS 5582 BP 74 F-38402 Saint-Martin-d’Hères},
author = {Gallay, Thierry},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {vortex; weakly viscous flow; Navier-Stokes system},
language = {fre},
pages = {1-16},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Interaction des tourbillons dans les écoulements plans faiblement visqueux},
url = {http://eudml.org/doc/11169},
volume = {2007-2008},
year = {2007-2008},
}
TY - JOUR
AU - Gallay, Thierry
TI - Interaction des tourbillons dans les écoulements plans faiblement visqueux
JO - Séminaire Équations aux dérivées partielles
PY - 2007-2008
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2007-2008
SP - 1
EP - 16
LA - fre
KW - vortex; weakly viscous flow; Navier-Stokes system
UR - http://eudml.org/doc/11169
ER -
References
top- H. Abidi et R. Danchin. Optimal bounds for the inviscid limit of Navier-Stokes equations. Asymptot. Anal.38 (2004), 35–46. Zbl1092.35075MR2060619
- Th. Beale et A. Majda. Rates of convergence for viscous splitting of the Navier-Stokes equations. Math. Comp.37 (1981), 243–259. Zbl0518.76027MR628693
- R. Caflisch et M. Sammartino. Vortex layers in the small viscosity limit. “WASCOM 2005”—13th Conference on Waves and Stability in Continuous Media, 59–70, World Sci. Publ., Hackensack, NJ, 2006.
- E. A. Carlen et M. Loss. Optimal smoothing and decay estimates for viscously damped conservation laws, with applications to the -D Navier-Stokes equation. Duke Math. J., 81, 135–157 (1996), 1995. Zbl0859.35011MR1381974
- J.-Y. Chemin. A remark on the inviscid limit for two-dimensional incompressible fluids. Comm. Partial Differential Equations21 (1996), 1771–1779. Zbl0876.35087MR1421211
- P.-H. Chen et W.-L. Wang. Roll-up of a viscous vortex sheet. J. Chinese Inst. Engrs.14 (1991), 507–517. MR1132594
- P. Constantin et J. Wu. Inviscid limit for vortex patches. Nonlinearity8 (1995), 735–742. Zbl0832.76011MR1355040
- P. Constantin et J. Wu. The inviscid limit for non-smooth vorticity. Indiana Univ. Math. J.45 (1996), 67–81. Zbl0859.76015MR1406684
- G.-H. Cottet. Équations de Navier-Stokes dans le plan avec tourbillon initial mesure. C. R. Acad. Sci. Paris Sér. I Math.303 (1986), 105–108. Zbl0606.35065MR853597
- R. Danchin. Poches de tourbillon visqueuses. J. Math. Pures Appl.76 (1997), 609–647. Zbl0903.76020MR1472116
- R. Danchin. Persistance de structures géométriques et limite non visqueuse pour les fluides incompressibles en dimension quelconque. Bull. Soc. Math. France127 (1999), 179–227. Zbl0937.35124MR1708655
- J.-M. Delort. Existence de nappes de tourbillon en dimension deux. J. Amer. Math. Soc.4 (1991), 553–586. Zbl0780.35073MR1102579
- D. Ebin et J. Marsden. Groups of diffeomorphisms and the notion of an incompressible fluid. Ann. of Math.92 (1970), 102–163. Zbl0211.57401MR271984
- I. Gallagher et Th. Gallay. Uniqueness for the two-dimensional Navier-Stokes equation with a measure as initial vorticity. Math. Ann.332 (2005), 287–327. Zbl1096.35102MR2178064
- I. Gallagher, Th. Gallay, et P.-L. Lions. On the uniqueness of the solution of the two-dimensional Navier-Stokes equation with a Dirac mass as initial vorticity. Math. Nachr.278 (2005), 1665–1672. Zbl1083.35092MR2176270
- Th. Gallay. Equations de Navier-Stokes dans le plan avec tourbillon initial mesure. Séminaire EDP de l’Ecole Polytechnique 2003-2004, exposé XIV.
- Th. Gallay et C. E. Wayne. Invariant manifolds and the long-time asymptotics of the Navier-Stokes and vorticity equations on . Arch. Ration. Mech. Anal.163 (2002), 209–258. Zbl1042.37058MR1912106
- Th. Gallay et C.E. Wayne. Global stability of vortex solutions of the two-dimensional Navier-Stokes equation. Comm. Math. Phys.255 (2005), 97–129. Zbl1139.35084MR2123378
- Th. Gallay et C.E. Wayne. Existence and stability of asymmetric Burgers vortices. J. Math. Fluid Mech.9 (2007), 243–261. Zbl1119.76012MR2329268
- Y. Giga, T. Miyakawa, et H. Osada. Two-dimensional Navier-Stokes flow with measures as initial vorticity. Arch. Rational Mech. Anal.104 (1988), 223–250. Zbl0666.76052MR1017289
- E. Grenier. On the nonlinear instability of Euler and Prandtl equations. Comm. Pure Appl. Math.53 (2000), 1067–1091. Zbl1048.35081MR1761409
- T. Hmidi. Régularité höldérienne des poches de tourbillon visqueuses. J. Math. Pures Appl.84 (2005), 1455–1495. Zbl1095.35024MR2181457
- T. Hmidi. Poches de tourbillon singulières dans un fluide faiblement visqueux. Rev. Mat. Iberoamericana22 (2006), 489–543. Zbl1127.35037MR2294788
- T. Kato : Nonstationary flows of viscous and ideal fluids in . J. Functional Analysis9 (1972), 296–305. Zbl0229.76018MR481652
- T. Kato. The Navier-Stokes equation for an incompressible fluid in with a measure as the initial vorticity. Differential Integral Equations7 (1994), 949–966. Zbl0826.35094MR1270113
- Y. Maekawa. Spectral properties of the linearization at the Burgers vortex in the high rotation limit. J. Math. Fluid Mech., to appear. Zbl1270.35350
- Y. Maekawa. On the existence of Burgers vortices for high Reynolds numbers. J. Math. Analysis and Applications, to appear. Zbl1156.35075
- A. Majda. Remarks on weak solutions for vortex sheets with a distinguished sign. Indiana Univ. Math. J.42 (1993), 921–939. Zbl0791.76015MR1254126
- A. Majda et A. Bertozzi. Vorticity and incompressible flow. Cambridge Texts in Applied Mathematics 27. Cambridge University Press, Cambridge, 2002. Zbl0983.76001MR1867882
- C. Marchioro. Euler evolution for singular initial data and vortex theory : a global solution. Comm. Math. Phys.116 (1988), 45–55. Zbl0654.76017MR937359
- C. Marchioro. On the vanishing viscosity limit for two-dimensional Navier-Stokes equations with singular initial data. Math. Methods Appl. Sci.12 (1990), 463–470. Zbl0703.76020MR1058150
- C. Marchioro. On the inviscid limit for a fluid with a concentrated vorticity. Comm. Math. Phys.196 (1998), 53–65. Zbl0911.35086MR1643505
- C. Marchioro et M. Pulvirenti. Vortices and localization in Euler flows. Comm. Math. Phys.154 (1993), 49–61. Zbl0774.35058MR1220946
- C. Marchioro et M. Pulvirenti. Mathematical theory of incompressible nonviscous fluids. Applied Mathematical Sciences 96, Springer-Verlag, New York, 1994. Zbl0789.76002MR1245492
- N. Masmoudi. Remarks about the inviscid limit of the Navier-Stokes system. Comm. Math. Phys.270 (2007), 777–788. Zbl1118.35030MR2276465
- H. K. Moffatt, S. Kida, et K. Ohkitani. Stretched vortices—the sinews of turbulence ; large-Reynolds-number asymptotics. J. Fluid Mech.259 (1994), 241–264. MR1261294
- H. Osada. Diffusion processes with generators of generalized divergence form. J. Math. Kyoto Univ.27 (1987), 597–619. Zbl0657.35073MR916761
- M. Sammartino et R. Caflisch. Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations. Comm. Math. Phys.192 (1998), 433–461. II. Construction of the Navier-Stokes solution. Comm. Math. Phys.192 (1998), 463–491. Zbl0913.35103MR1617542
- F. Sueur. Vorticity internal transition layers for the Navier-Stokes equations. Travail en préparation.
- H. Swann. The convergence with vanishing viscosity of nonstationary Navier-Stokes flow to ideal flow in . Trans. Amer. Math. Soc.157 (1971), 373–397. Zbl0218.76023MR277929
- L. Ting et R. Klein. Viscous vortical flows. Lecture Notes in Physics 374. Springer-Verlag, Berlin, 1991. Zbl0748.76007MR1146212
- L. Ting et C. Tung. Motion and decay of a vortex in a nonuniform stream. Phys. Fluids8 (1965), 1039–1051. Zbl0125.43503MR189371
- M. Vishik. Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type. Ann. Sci. Ecole Norm. Sup.32 (1999), 769–812. Zbl0938.35128MR1717576
- V. Yudovich. Non-stationary flows of an ideal incompressible fluid. Ž. Vyčisl. Mat. i Mat. Fiz.3 (1963), 1032–1066. Zbl0147.44303
- V. Yudovich. Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid. Math. Res. Lett.2 (1995), 27–38. Zbl0841.35092MR1312975
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.