Semiclassical Limit of the cubic nonlinear Schrödinger Equation concerning a superfluid passing an obstacle

Fanghua Lin[1]; Ping Zhang[2]

  • [1] Courant Institute, 251 Mercer Street, New York, NY 10012
  • [2] Academy of Mathematics and System Sciences, The Chinese Academy of Sciences, Beijing 100080, China.

Séminaire Équations aux dérivées partielles (2004-2005)

  • Volume: 2004-2005, page 1-13

Abstract

top
In this paper, we study the semiclassical limit of the cubic nonlinear Schrödinger equation with the Neumann boundary condition in an exterior domain. We prove that before the formation of singularities in the limit system, the quantum density and the quantum momentum converge to the unique solution of the compressible Euler equation with the slip boundary condition as the scaling parameter approaches 0 .

How to cite

top

Lin, Fanghua, and Zhang, Ping. "Semiclassical Limit of the cubic nonlinear Schrödinger Equation concerning a superfluid passing an obstacle." Séminaire Équations aux dérivées partielles 2004-2005 (2004-2005): 1-13. <http://eudml.org/doc/11104>.

@article{Lin2004-2005,
abstract = {In this paper, we study the semiclassical limit of the cubic nonlinear Schrödinger equation with the Neumann boundary condition in an exterior domain. We prove that before the formation of singularities in the limit system, the quantum density and the quantum momentum converge to the unique solution of the compressible Euler equation with the slip boundary condition as the scaling parameter approaches $0.$},
affiliation = {Courant Institute, 251 Mercer Street, New York, NY 10012; Academy of Mathematics and System Sciences, The Chinese Academy of Sciences, Beijing 100080, China.},
author = {Lin, Fanghua, Zhang, Ping},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {Semiclassical limit; Schrödinger equation; compressible Euler equation; semiclassical limit},
language = {eng},
pages = {1-13},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Semiclassical Limit of the cubic nonlinear Schrödinger Equation concerning a superfluid passing an obstacle},
url = {http://eudml.org/doc/11104},
volume = {2004-2005},
year = {2004-2005},
}

TY - JOUR
AU - Lin, Fanghua
AU - Zhang, Ping
TI - Semiclassical Limit of the cubic nonlinear Schrödinger Equation concerning a superfluid passing an obstacle
JO - Séminaire Équations aux dérivées partielles
PY - 2004-2005
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2004-2005
SP - 1
EP - 13
AB - In this paper, we study the semiclassical limit of the cubic nonlinear Schrödinger equation with the Neumann boundary condition in an exterior domain. We prove that before the formation of singularities in the limit system, the quantum density and the quantum momentum converge to the unique solution of the compressible Euler equation with the slip boundary condition as the scaling parameter approaches $0.$
LA - eng
KW - Semiclassical limit; Schrödinger equation; compressible Euler equation; semiclassical limit
UR - http://eudml.org/doc/11104
ER -

References

top
  1. H. Beirao Da Veiga, On the barotropic motion of compressible perfect fluids, Ann. Sc. Norm. Sup. Pisa, 8 (1981), 417–351. Zbl0477.76059MR623940
  2. H. Beirao Da Veiga, Data dependence in the mathematical theory of compressible inviscid fluids, Arch. Rational Mech. Anal., 119 (1992), 109–127. Zbl0754.76068MR1176361
  3. Y. Brenier, Convergence of the Vlasov-Poisson system to the incompressible Euler equations, Comm. Partial Diff. Equations, 25 (2000), 737–754. Zbl0970.35110MR1748352
  4. H. Brezis and T. Gallouet, Nonlinear Schrödinger evolution equations, Nonlinear Analysis, TMA, 4 (1980), 677–681. Zbl0451.35023MR582536
  5. G. C. Dong, Nonlinear second order parabolic equations. Translated from the Chinese by Kai Seng Chou [Kaising Tso]. Translations of Mathematical Monographs, 95. American Mathematical Society, Providence, RI, 1991. viii+251 pp . Zbl0759.35001MR1134129
  6. T. Frisch, Y. Pomeau and S. Rica, Transition to dissipation in a model of superflow, Phys. Rev. Lett.69, No. 11, (1992), 1644–1647. 
  7. P. Gérard, Mesures semi-classiques et ondes de Bloch, Séminaire sur les équations aux Dérivées Partielles, 1990–1991, Exp. No. XVI, 19 École Polytech., Palaiseau, 1991. Zbl0739.35096MR1131589
  8. E. P. Gross, J. Math. Phys.4 (1963), 195– 
  9. V. L. Ginzburg and L. P. Pitaevskii, On the theory of superfluidity, Sov. Phys. JETP7 (1958), 585. MR105929
  10. E. Grenier, Semiclassical limit of the nonlinear Schrödinger equation in small time, Proc. Amer. Math. Soc., 126 (1998), 523–530. Zbl0910.35115MR1425123
  11. C. Josserand and Y. Pomeau, Nonlinear aspects of the theory of Bose-Einstein condensates, Nonlinearity14 (2000), R25–R62. Zbl1037.82031MR1862803
  12. L. D. Landau and E. M. Lifschits, Fluid Mechanics, Course of Theoretical Physics6 London-New York, Pregamon Press (1989). Zbl0655.76001
  13. F. H. Lin and J. Xin, On the Incompressible Fluid Limit and the Vortex Motion Law of the Nonlinear Schrödinger Equation, Comm. Math. Phys.200 (1999), 249–274. Zbl0920.35145MR1674000
  14. F. H. Lin and Ping Zhang, Semiclassical limit of the Gross-Pitaevskii equation in an exterior domain, Arch. Rational Mech. Anal., (to appear). Zbl1079.76016MR2208290
  15. P. L. Lions and T. Paul, Sur les mesures de Wigner, Rev. Mat. Iberoamericana, 9 (1993), 553–618. Zbl0801.35117MR1251718
  16. E. Madelung, Quanten theorie in Hydrodynamic Form, Z. Physik40 (1927), 322. 
  17. M. Puel, Convergence of the Schrödinger-Poisson system to the incompressible Euler equations, Comm. Partial Diff. Equations, 27 (2002), 2311–2331. Zbl1040.35076MR1944031
  18. S. Schochet, The compressible Euler equations in a bounded domain: existence of solutions and the incompressible limit, Comm. Math. Phys., 104 (1986), 49–75. Zbl0612.76082MR834481
  19. T.  C. Sideris, Formation of singularities in three-dimensional compressible fluids, Comm. Math. Phys., 101 (1985), 475–485. Zbl0606.76088MR815196
  20. M. Tsutsumi, On smooth solutions to the initial-boundary value problem for the nonlinear Schrödinger equation in two space diemnsion, Nonlinear Analysis, TMA, 13 (1989), 1051–1056. Zbl0693.35133MR1013309
  21. E. Wigner, On the quantum correction for the thermodynamic equivalium, Phys. Rev., 40 (1932), 742-759. Zbl0004.38201
  22. Ping Zhang, Yuxi Zheng, and N. J. Mauser, The limit from the Schrödinger-Poisson to the Vlasov-Poisson equations with general data in one dimension, Comm. Pure Appl. Math.,55 (2002), 582–632. Zbl1032.81011MR1880644
  23. Ping Zhang, Wigner measure and the semiclassical limit of Schrödinger-Poisson Equations, SIAM. J. Math. Anal., 34 (2002), 700–718. Zbl1032.35132MR1970889
  24. Ping Zhang, Semiclassical limit of nonlinear Schrödinger equation (II), J. Partial Diff. Eqs., 15 (2002), 83–96. Zbl1003.35116MR1909288

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.