### Decay for travelling waves in the Gross–Pitaevskii equation

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

This paper gives a rigorous derivation of a functional proposed by Aftalion and Rivière [Phys. Rev. A64 (2001) 043611] to characterize the energy of vortex filaments in a rotationally forced Bose-Einstein condensate. This functional is derived as a Γ-limit of scaled versions of the Gross-Pitaevsky functional for the wave function of such a condensate. In most situations, the vortex filament energy functional is either unbounded below or has only trivial minimizers, but we establish the existence...

We study numerically the semiclassical limit for the nonlinear Schrödinger equation thanks to a modification of the Madelung transform due to Grenier. This approach allows for the presence of vacuum. Even if the mesh size and the time step do not depend on the Planck constant, we recover the position and current densities in the semiclassical limit, with a numerical rate of convergence in accordance with the theoretical results, before shocks appear in the limiting Euler equation. By using simple...

We consider an energy-functional describing rotating superfluids at a rotating velocity $\omega $, and prove similar results as for the Ginzburg-Landau functional of superconductivity: mainly the existence of branches of solutions with vortices, the existence of a critical $\omega $ above which energy-minimizers have vortices, evaluations of the minimal energy as a function of $\omega $, and the derivation of a limiting free-boundary problem.

We consider an energy-functional describing rotating superfluids at a rotating velocity ω, and prove similar results as for the Ginzburg-Landau functional of superconductivity: mainly the existence of branches of solutions with vortices, the existence of a critical ω above which energy-minimizers have vortices, evaluations of the minimal energy as a function of ω, and the derivation of a limiting free-boundary problem.

In this paper, we study the semiclassical limit of the cubic nonlinear Schrödinger equation with the Neumann boundary condition in an exterior domain. We prove that before the formation of singularities in the limit system, the quantum density and the quantum momentum converge to the unique solution of the compressible Euler equation with the slip boundary condition as the scaling parameter approaches $0.$