Asymptotics for Bergman kernels for high powers of complex line bundles, based on joint works with B. Berndtsson and R. Berman

Johannes Sjöstrand[1]

  • [1] CMLS, Ecole Polytechnique, FR-91128 Palaiseau Cédex

Séminaire Équations aux dérivées partielles (2004-2005)

  • page 1-8

How to cite

top

Sjöstrand, Johannes. "Asymptotics for Bergman kernels for high powers of complex line bundles, based on joint works with B. Berndtsson and R. Berman." Séminaire Équations aux dérivées partielles (2004-2005): 1-8. <http://eudml.org/doc/11112>.

@article{Sjöstrand2004-2005,
affiliation = {CMLS, Ecole Polytechnique, FR-91128 Palaiseau Cédex},
author = {Sjöstrand, Johannes},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {complex; line; bundle},
language = {eng},
pages = {1-8},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Asymptotics for Bergman kernels for high powers of complex line bundles, based on joint works with B. Berndtsson and R. Berman},
url = {http://eudml.org/doc/11112},
year = {2004-2005},
}

TY - JOUR
AU - Sjöstrand, Johannes
TI - Asymptotics for Bergman kernels for high powers of complex line bundles, based on joint works with B. Berndtsson and R. Berman
JO - Séminaire Équations aux dérivées partielles
PY - 2004-2005
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 8
LA - eng
KW - complex; line; bundle
UR - http://eudml.org/doc/11112
ER -

References

top
  1. B. Berndtsson, R. Berman, J. Sjöstrand, In preparation. 
  2. R. Berman, J. Sjöstrand, In preparation. 
  3. R. Berman, Bergman kernels and local holomorphic Morse inequalities, Math. Z. 248(2)(2004), 325–344. Zbl1066.32002MR2088931
  4. J.M. Bismut, Demailly’s asymptotic Morse inequalities, a heat equation proof, J. Funct. Anal., 72(1987), 263–278. Zbl0649.58030
  5. P. Bleher, B. Shiffman, S. Zelditch, Universality and scaling of correlations between zeros on complex manifolds, Invent. Math. 142(2)(2000), 351–395. Zbl0964.60096MR1794066
  6. T. Bouche, Convergence de la métrique de Fubini Study d’un fibré linéaire positif, Ann. Inst. Fourier, 40(1)(1990), 117-130. Zbl0685.32015
  7. L. Boutet de Monvel, V. Guillemin, The spectral theory of Toeplitz operators, Annals of Mathematics Studies, 99. Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1981. Zbl0469.47021MR620794
  8. L. Boutet de Monvel, J. Sjöstrand, Sur la singularité des noyaux de Bergman et de Szegö, Astérisque 34-35 (1976), 123–164. Zbl0344.32010MR590106
  9. D. Catlin, The Bergman kernel and a theorem of Tian, Analysis and geometry in several complex variables (Katata, 1997), 1–23, Trends in Math. Birkhäuser, Boston, MA, 1999. Zbl0941.32002MR1699887
  10. L. Charles, Berezin-Toeplitz operators, a semi-classical approach, CMP 239(2003),1–28. Zbl1059.47030MR1997113
  11. X. Dai, K. Liu, X. Ma, On the asymptotic expansion of Bergman kernel, Preprint and CRAS 339(2004), 193–198. Zbl1057.58018MR2078073
  12. M. Dimassi, J. Sjöstrand, Spectral asymptotics in the semi-classical limit, London Math. Soc Lecture Notes Series 268, Cambridge Univ. Press 1999. Zbl0926.35002MR1735654
  13. C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26(1974), 1–65. Zbl0289.32012MR350069
  14. L. Hörmander, An introduction to complex analysis in several variables, van Nostrand, (1966), 1967. Zbl0138.06203MR203075
  15. Z. Lu, On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch, Am. J. Math., 122(2)(2000), 235–273. Zbl0972.53042MR1749048
  16. Z. Lu, G. Tian, The log term of Szegö kernel, Duke Math. J. 125(2)(2004), 351-387. Zbl1072.32014MR2096677
  17. X. Ma, Marinescu, The spin c Dirac operator on high tensor powers of a line bundle, Math. Z. 240(3)(2002), 651–664. Zbl1027.58025MR1924025
  18. A. Melin, J. Sjöstrand, Fourier integral operators with complex valued phase functions, Springer LNM, 459. Zbl0306.42007MR431289
  19. A. Melin, J. Sjöstrand, Fourier integral operators with complex phase functions and parametrix for an interior boundary value problem, CPDE, 1(4)(1976), 313–400. Zbl0364.35049MR455054
  20. A. Melin, J. Sjöstrand, Determinants of pseudodifferential operators and complex deformations of phase space, Methods and Appl. of Anal. 9(2)(2002), 177–238. Zbl1082.35176MR1957486
  21. A. Menikoff, J. Sjöstrand, On the eigenvalues of a class of hypoelliptic operators, Math. Ann. 235(1978), 55–85. Zbl0375.35014MR481627
  22. A. Menikoff, J. Sjöstrand, The eigenvalues of hypoelliptic operators III, the non-semibounded case, J. d’Analyse Math. 35(1979), 123–150. Zbl0436.35065
  23. W. Ruan, Canonical coordintes and Bergman metrics, Comm. Anal. Geom., 6(1998), 589–631. Zbl0917.53026MR1638878
  24. G. Tian, On a set of polarized Kähler metrics, J. Diff. Geom., 32(1990), 99–130. Zbl0706.53036MR1064867
  25. R.O. Wells, Differential analysis on complex manifolds, Graduate texts in mathematics 65, Springer 1980 Zbl0435.32004MR608414
  26. S. Zelditch, Szegö kernels and a theorem of Tian, IMRN 1998(6), 317–331. Zbl0922.58082MR1616718

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.