Asymptotics for Bergman-Hodge kernels for high powers of complex line bundles

Robert Berman[1]; Johannes Sjöstrand[2]

  • [1] Department of Mathematics, Chalmers University of Technology, Eklandag. 86, SE-412 96 Göteborg
  • [2] CMLS, Ecole Polytechnique, FR-91128 Palaiseau cedex, UMR 7640, CNRS.

Annales de la faculté des sciences de Toulouse Mathématiques (2007)

  • Volume: 16, Issue: 4, page 719-771
  • ISSN: 0240-2963

Abstract

top
In this paper we obtain the full asymptotic expansion of the Bergman-Hodge kernel associated to a high power of a holomorphic line bundle with non-degenerate curvature. We also explore some relations with asymptotic holomorphic sections on symplectic manifolds.

How to cite

top

Berman, Robert, and Sjöstrand, Johannes. "Asymptotics for Bergman-Hodge kernels for high powers of complex line bundles." Annales de la faculté des sciences de Toulouse Mathématiques 16.4 (2007): 719-771. <http://eudml.org/doc/10068>.

@article{Berman2007,
abstract = {In this paper we obtain the full asymptotic expansion of the Bergman-Hodge kernel associated to a high power of a holomorphic line bundle with non-degenerate curvature. We also explore some relations with asymptotic holomorphic sections on symplectic manifolds.},
affiliation = {Department of Mathematics, Chalmers University of Technology, Eklandag. 86, SE-412 96 Göteborg; CMLS, Ecole Polytechnique, FR-91128 Palaiseau cedex, UMR 7640, CNRS.},
author = {Berman, Robert, Sjöstrand, Johannes},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Bergman kernel; Dolbeault cohomology group},
language = {eng},
number = {4},
pages = {719-771},
publisher = {Université Paul Sabatier, Toulouse},
title = {Asymptotics for Bergman-Hodge kernels for high powers of complex line bundles},
url = {http://eudml.org/doc/10068},
volume = {16},
year = {2007},
}

TY - JOUR
AU - Berman, Robert
AU - Sjöstrand, Johannes
TI - Asymptotics for Bergman-Hodge kernels for high powers of complex line bundles
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2007
PB - Université Paul Sabatier, Toulouse
VL - 16
IS - 4
SP - 719
EP - 771
AB - In this paper we obtain the full asymptotic expansion of the Bergman-Hodge kernel associated to a high power of a holomorphic line bundle with non-degenerate curvature. We also explore some relations with asymptotic holomorphic sections on symplectic manifolds.
LA - eng
KW - Bergman kernel; Dolbeault cohomology group
UR - http://eudml.org/doc/10068
ER -

References

top
  1. Baston R.J., Eastwood M.G..— The Penrose transform. Its interaction with representation theory, Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1989. xvi+213 pp Zbl0726.58004MR1038279
  2. Berman R..— Bergman kernels and local holomorphic Morse inequalities, Math. Z. 248(2), p. 325–344 (2004). Zbl1066.32002MR2088931
  3. Berman R..— Super Toeplitz operators on holomorphic line bundles, J. Geom. Anal. 16(1), p. 1-22 (2006). Zbl1104.32001MR2211329
  4. Berndtsson B., Berman R., Sjöstrand J..— Asymptotics of Bergman kernels, arXiv.org/abs/math.CV/050636 
  5. Bismut J.M..— Demailly’s asymptotic Morse inequalities, a heat equation proof, J. Funct. Anal. 72, p. 263–278 (1987). Zbl0649.58030
  6. Bleher P., Shiffman B., Zelditch S..— Universality and scaling of correlations between zeros on complex manifolds, Invent. Math. 142(2), p. 351–395 (2000). Zbl0964.60096MR1794066
  7. Borel A., Hirzebruch F..— Characteristic classes and homogeneous spaces I. Amer. J. Math. 80, p. 458–538 (1958). Zbl0097.36401MR102800
  8. Bott R..— Homogeneous vector bundles, Ann. of Math. 66(2), p. 203–248 (1957). Zbl0094.35701MR89473
  9. Bott R..— On induced representations, The mathematical heritage of Hermann Weyl (Durham, NC, 1987), p. 1–13, Proc.Sympos. Pure Math. 48, Amer. Math. Soc., Providence, RI, 1988. Zbl0657.22020MR974328
  10. Bott R., Tu L..— Differential forms in algebraic topology, Graduate Texts in Mathematics, 82. Springer-Verlag, New York-Berlin, 1982 Zbl0496.55001MR658304
  11. Bouche T..— Convergence de la métrique de Fubini Study d’un fibré linéaire positif, Ann. Inst. Fourier 40(1), p. 117-130 (1990). Zbl0685.32015
  12. Boutet de Monvel L., Guillemin V..— The spectral theory of Toeplitz operators, Annals of Mathematics Studies, 99. Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1981. Zbl0469.47021MR620794
  13. Boutet de Monvel L., Sjöstrand J..— Sur la singularité des noyaux de Bergman et de Szegö, Astérisque 34-35 , p. 123–164 (1976). Zbl0344.32010MR590106
  14. Catlin D..— The Bergman kernel and a theorem of Tian, Analysis and geometry in several complex variables (Katata, 1997), 1–23, Trends in Math. Birkhäuser, Boston, MA, 1999. Zbl0941.32002MR1699887
  15. Charles L..— Berezin-Toeplitz operators, a semi-classical approach, CMP 239, p.1–28 (2003). Zbl1059.47030MR1997113
  16. Charles L..— Aspects semi-classiques de la quantification géometrique, Ph.D. thesis, Universite Paris IX-Dauphine (2000). 
  17. Dai X., Liu K., Ma X..— On the asymptotic expansion of Bergman kernel, J. Diff. Geom. 72(1), p. 1–41 (2006). Zbl1099.32003MR2215454
  18. Demailly J.P., Peternell T., Schneider M..— Holomorphic line bundles with partially vanishing cohomology, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993), 165–198, Israel Math. Conf. Proc., 9, Bar-Ilan Univ., Ramat Gan, 1996.) Zbl0859.14005MR1360502
  19. Dimassi M., Sjöstrand J..— Spectral asymptotics in the semi-classical limit, London Math. Soc. Lecture Notes Series 268, Cambridge Univ. Press 1999. Zbl0926.35002MR1735654
  20. Donaldson S.K..— Symplectic submanifolds and almost-complex geometry, J. Differential Geom. 44(4), p. 666-705 (1996). Zbl0883.53032MR1438190
  21. Fefferman C..— The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26, p. 1–65 (1974). Zbl0289.32012MR350069
  22. Fulton W., Harris J..— Representation theory. A first course, Graduate Texts in Mathematics, 129. Readings in Mathematics. Springer-Verlag, New York, 1991. xvi+551 pp. Zbl0744.22001MR1153249
  23. Gilkey P..— Invariance theory, the heat equation, and the Atiyah-Singer index theorem, Second edition. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1995. Zbl0856.58001MR1396308
  24. Griffiths P., Harris J..— Principles of algebraic geometry. Reprint of the 1978 original, Wiley Classics Library. John Wiley & Sons, Inc., New York, 1994. Zbl0836.14001MR1288523
  25. Guillemin J., Uribe A..— On the de Haas-van Alphen effect, Asymptotic Anal. 6(3), p. 205–217 (1993). Zbl0774.35063MR1201193
  26. Helffer B., Sjöstrand J..— Semiclassical analysis for Harper’s equation. III. Cantor structure of the spectrum, Mém. Soc. Math. France (N.S.) No. 39, p. 1–124 (1989). Zbl0725.34099
  27. Hörmander L..— An introduction to complex analysis in several variables, van Nostrand, (1966), 1967. Zbl0138.06203MR203075
  28. Karabegov A.V..— Pseudo-Kähler quantization on flag manifolds, Comm. Math. Phys. 200(2), p. 355–379(1999). Zbl0932.37070MR1673984
  29. Kirillov A.A..— Lectures on the orbit method, Graduate Studies in Mathematics, 64. American Mathematical Society, Providence, RI, 2004. xx+408 pp Zbl1229.22003MR2069175
  30. Kostant B..— Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. 74(2), p. 329–387 (1961). Zbl0134.03501MR142696
  31. Kuronya A..— Asymptotic cohomological functions on projective varieties, (arXiv.org/abs/math.AG/0501491) Zbl1114.14005MR2275909
  32. Lu Z..— On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch, Am. J. Math. 122(2), p. 235–273 (2000). Zbl0972.53042MR1749048
  33. Lu Z., Tian G..— The log term of Szegö kernel, Duke Math. J. 125(2), p. 351-387 (2004). Zbl1072.32014MR2096677
  34. Ma X., Marinescu G..— The spin c Dirac operator on high tensor powers of a line bundle, Math. Z. 240(3), p. 651–664 (2002). Zbl1027.58025MR1924025
  35. Ma X., Marinescu G..— Generalized Bergman kernels on symplectic manifolds, C. R. Math. Acad. Sci. Paris 339(7)(2004), 493-498, (arXiv.org/abs/math.DG/0411559). Zbl1066.32006MR2099548
  36. Ma X., Marinescu G..— The first coefficients of the asymptotic expansion of the Bergman kernel of the spin c Dirac operator, International J. Math. 17(6) (2006), 737-759. Zbl1106.58018MR2246888
  37. Melin A., Sjöstrand J..— Fourier integral operators with complex valued phase functions, Springer LNM, 459. Zbl0306.42007MR431289
  38. Melin A., Sjöstrand J..— Fourier integral operators with complex phase functions and parametrix for an interior boundary value problem, CPDE, 1(4), p. 313–400 (1976). Zbl0364.35049MR455054
  39. Melin A., Sjöstrand J..— Determinants of pseudodifferential operators and complex deformations of phase space, Methods and Appl. of Anal. 9(2), p. 177–238 (2002). Zbl1082.35176MR1957486
  40. Menikoff A., Sjöstrand J..— On the eigenvalues of a class of hypoelliptic operators, Math. Ann. 235, p. 55–85 (1978). Zbl0375.35014MR481627
  41. Menikoff A., Sjöstrand J..— The eigenvalues of hypoelliptic operators III, the non-semibounded case, J. d’Analyse Math. 35, p. 123–150 (1979). Zbl0436.35065
  42. Robert D..— Autour de l’approximation semi-classique, Progress in Mathematics, 68. Birkhäuser Boston, Inc., Boston, MA, 1987. Zbl0621.35001
  43. Ruan W..— Canonical coordinates and Bergman metrics, Comm. Anal. Geom. 6, p. 589–631 (1998). Zbl0917.53026MR1638878
  44. Shiffman B., Zelditch Z..— Asymptotics of almost holomorphic sections of ample line bundles on symplectic manifolds, J. Reine Angew. Math. 544, p. 181–222 (2002). Zbl1007.53058MR1887895
  45. Sjöstrand J..— Singularités analytiques microlocales, Astérisque 95 (1982). Zbl0524.35007MR699623
  46. Sjöstrand J..— Parametrices for pseudodifferential operators with multiple characteristics, Ark. Mat. 12, p. 85–130 (1974). Zbl0317.35076MR352749
  47. Sjöstrand J..— Asymptotics for Bergman kernels for high powers of complex line bundles, based on joint work with B. Berndtsson and R. Berman, Sém. équations aux dérivées partielles, Ecole Polytechnique, 2004–2005, exposé no 23 (17.5.2005), http://www.math.polytechnique.fr/seminaires/seminaires-edp/2004-2005/sommaire2004-2005.html MR2182066
  48. Sjöstrand J., Zworski M..— Quantum monodromy and semi-classical trace formulae, J. Math. Pures Appl. 81(1), no. 1, p. 1–33 (2002). Zbl1038.58033MR1994881
  49. Tian G..— On a set of polarized Kähler metrics, J. Diff. Geom. 32, p. 99–130 (1990). Zbl0706.53036MR1064867
  50. Wells R.O..— Differential analysis on complex manifolds, Graduate texts in mathematics 65, Springer 1980. Zbl0435.32004MR608414
  51. Zelditch S..— Szegö kernels and a theorem of Tian, IMRN 1998(6), p. 317–331. Zbl0922.58082MR1616718
  52. Zierau R..— Representations in Dolbeault cohomology, Representation theory of Lie groups (Park City, UT, 1998), 91–146, IAS/Park City Math. Ser., 8, Amer. Math. Soc., Providence, RI, 2000 Zbl0951.22007MR1737727

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.