Uncertainty principles for orthonormal bases

Philippe Jaming[1]

  • [1] Université d’Orléans Faculté des Sciences MAPMO - Fédération Denis Poisson BP 6759 F 45067 Orléans Cedex 2 France

Séminaire Équations aux dérivées partielles (2005-2006)

  • Volume: 2005-2006, page 1-14

Abstract

top
In this survey, we present various forms of the uncertainty principle (Hardy, Heisenberg, Benedicks...). We further give a new interpretation of the uncertainty principles as a statement about the time-frequency localization of elements of an orthonormal basis, which improves previous unpublished results of H. Shapiro.Finally, we reformulate some uncertainty principles in terms of properties of the free heat and shrödinger equations.

How to cite

top

Jaming, Philippe. "Uncertainty principles for orthonormal bases." Séminaire Équations aux dérivées partielles 2005-2006 (2005-2006): 1-14. <http://eudml.org/doc/11127>.

@article{Jaming2005-2006,
abstract = {In this survey, we present various forms of the uncertainty principle (Hardy, Heisenberg, Benedicks...). We further give a new interpretation of the uncertainty principles as a statement about the time-frequency localization of elements of an orthonormal basis, which improves previous unpublished results of H. Shapiro.Finally, we reformulate some uncertainty principles in terms of properties of the free heat and shrödinger equations.},
affiliation = {Université d’Orléans Faculté des Sciences MAPMO - Fédération Denis Poisson BP 6759 F 45067 Orléans Cedex 2 France},
author = {Jaming, Philippe},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {Uncertainty principles; orthonormal bases},
language = {eng},
pages = {1-14},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Uncertainty principles for orthonormal bases},
url = {http://eudml.org/doc/11127},
volume = {2005-2006},
year = {2005-2006},
}

TY - JOUR
AU - Jaming, Philippe
TI - Uncertainty principles for orthonormal bases
JO - Séminaire Équations aux dérivées partielles
PY - 2005-2006
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2005-2006
SP - 1
EP - 14
AB - In this survey, we present various forms of the uncertainty principle (Hardy, Heisenberg, Benedicks...). We further give a new interpretation of the uncertainty principles as a statement about the time-frequency localization of elements of an orthonormal basis, which improves previous unpublished results of H. Shapiro.Finally, we reformulate some uncertainty principles in terms of properties of the free heat and shrödinger equations.
LA - eng
KW - Uncertainty principles; orthonormal bases
UR - http://eudml.org/doc/11127
ER -

References

top
  1. W. O. Amrein & A. M. BerthierOn support properties of L p -functions and their Fourier transforms. J. Functional Analysis 24 (1977), 258–267. Zbl0355.42015MR461025
  2. R. BalianUn principe d’incertitude fort en théorie du signal ou en mécanique quantique. C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre 292 (1981), 1357–1362. 
  3. M. BenedicksOn Fourier transforms of functions supported on sets of finite Lebesgue measure. J. Math. Anal. Appl. 106 (1985), 180–183. Zbl0576.42016MR780328
  4. A. Bonami & B. DemangeA survey on the uncertainty principle for quadratic forms à parraiître dans Collecteana Math. 
  5. A. Bonami, B. Demange & Ph. JamingHermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms. Rev. Mat. Iberoamericana 19 (2003), 23–55 Zbl1037.42010MR1993414
  6. M. G. Cowling & J. F. PriceBandwidth versus time concentration: the Heisenberg-Pauli-Weyl inequality. SIAM J. Math. Anal. 15 (1984) 151–165. MR728691
  7. N. G. de BruijnUncertainty principles in Fourier analysis. in Inequalities. (O. Shisha, ed.) Academic Press, New York (1967) 55–71. MR219977
  8. B. DemangePrincipes d’incertitude associés à des formes quadratiques non dégénérées Thèse de l’université d’Orléans, 2004. 
  9. P. Delsarte, J. M. Goethals & J. J. SeidelSpherical codes and designs Geometrica Dedicata 6 (1977) 363–388. Zbl0376.05015MR485471
  10. L. Escauriaza, C. E. Kenig & L. VegaDecay at infinity of caloric functions within characteristic hyperplane. preprint. 
  11. L. Escauriaza, C. E. Kenig, G. Ponce & L. VegaOn unique continuation for Schroedinger equation. to appear in Comm. Part. Diff. Eq. 
  12. W.G. FarisInequalities and uncertainty principles. J. Math. Phys. 19 (1978), 461–466. MR484134
  13. G. B. Folland & A. SitaramThe uncertainty principle — a mathematical survey. J. Fourier Anal. Appl. 3 (1997), 207–238. Zbl0885.42006MR1448337
  14. G. H. HardyA theorem concerning Fourier transforms. J. London Math. Soc. 8 (1933), 227–231. Zbl0007.30403
  15. V. Havin & B. JörickeThe uncertainty principle in harmonic analysis. Springer-Verlag, Berlin, 1994. Zbl0827.42001MR1303780
  16. Ph. Jaming & A. PowellUncertainty principles for orthonormal bases. preprint 2006. 
  17. O. KovrijkineSome results related to the Logvinenko-Sereda theorem. Proc. Amer. Math. Soc. 129 (2001) 3037–3047. Zbl0976.42004MR1840110
  18. F. LowComplete sets of wave packets. in A Passion for Physics—Essays in Honor of Geoffrey Chew, edited by C. DeTar et al. (World Scientific, Singapore, 1985), pp. 17–22. 
  19. H. J. Landau & H. O. Pollak,Prolate spheroidal wave functions, Fourier analysis and uncertainty. II. Bell System Tech. J. 40 (1961), 65–84. Zbl0184.08602MR140733
  20. H. J. Landau & H. O. Pollak,Prolate spheroidal wave functions, Fourier analysis and uncertainty. III. The dimension of the space of essentially time- and band-limited signals. Bell System Tech. J. 41 (1962), 1295–1336. Zbl0184.08603MR147686
  21. V. N. Logvinenko & Ju. F. Sereda,Equivalent norms in spaces of entire functions of exponential type. (Russian) Teor. FunkciĭFunkcional. Anal. i Priložen. Vyp. 20 (1974), 102–111, 175. Zbl0312.46039MR477719
  22. F. L. NazarovLocal estimates for exponential polynomials and their applications to inequalities of the uncertainty principle type. (Russian) Algebra i Analiz 5 (1993), 3–66; translation in St. Petersburg Math. J. 5 (1994), 663–717. Zbl0822.42001MR1246419
  23. B. PaneahSupport-dependent weighted norm estimates for Fourier transforms. J. Math. Anal. Appl. 189 (1995), 552–574. Zbl0831.42006MR1312061
  24. B. PaneahSupport-dependent weighted norm estimates for Fourier transforms. II. Duke Math. J. 92 (1998), 35–353. Zbl1039.42006MR1612797
  25. A. M. PowellTime-frequency mean and variance sequences of orthonormal bases. J. Fourier Anal. Appl. 11 (2005), 375–387. Zbl1087.42003MR2169472
  26. J. F. PriceInequalities and local uncertainty principles. J. Math. Phys. 24 (1983), 1711-1714. Zbl0513.60100MR709504
  27. J. F. Price & A. SitaramLocal uncertainty inequalities for locally compact groups. Trans. Amer. Math. Soc. 308 (1988), 105-114. Zbl0659.43004MR946433
  28. H. S. ShapiroUncertainty principles for basis in L 2 ( ) , unpublished manuscript (1991). 
  29. H. S. ShapiroUncertainty principles for basis in L 2 ( ) , Proceedings of the conference on Harmonic Analysis and Number Theory, CIRM, Marseille-Luminy, october 16-21, 2005, L. Habsieger, A. Plagne & B. Saffari (Eds). In preparation 
  30. D. Slepian & H. O. PollakProlate spheroidal wave functions, Fourier analysis and uncertainty. I. Bell System Tech. J. 40 (1961), 43–63. Zbl0184.08601MR140732
  31. D. SlepianProlate spheroidal wave functions, Fourier analysis and uncertainity. IV. Extensions to many dimensions; generalized prolate spheroidal functions. Bell System Tech. J. 43 (1964), 3009–3057. Zbl0184.08604MR181766
  32. D. SlepianSome comments on Fourier analysis, uncertainty and modeling. SIAM Rev. 25 (1983), 379–393. Zbl0571.94004MR710468

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.