Uncertainty principles for orthonormal bases
- [1] Université d’Orléans Faculté des Sciences MAPMO - Fédération Denis Poisson BP 6759 F 45067 Orléans Cedex 2 France
Séminaire Équations aux dérivées partielles (2005-2006)
- Volume: 2005-2006, page 1-14
Access Full Article
topAbstract
topHow to cite
topJaming, Philippe. "Uncertainty principles for orthonormal bases." Séminaire Équations aux dérivées partielles 2005-2006 (2005-2006): 1-14. <http://eudml.org/doc/11127>.
@article{Jaming2005-2006,
abstract = {In this survey, we present various forms of the uncertainty principle (Hardy, Heisenberg, Benedicks...). We further give a new interpretation of the uncertainty principles as a statement about the time-frequency localization of elements of an orthonormal basis, which improves previous unpublished results of H. Shapiro.Finally, we reformulate some uncertainty principles in terms of properties of the free heat and shrödinger equations.},
affiliation = {Université d’Orléans Faculté des Sciences MAPMO - Fédération Denis Poisson BP 6759 F 45067 Orléans Cedex 2 France},
author = {Jaming, Philippe},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {Uncertainty principles; orthonormal bases},
language = {eng},
pages = {1-14},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Uncertainty principles for orthonormal bases},
url = {http://eudml.org/doc/11127},
volume = {2005-2006},
year = {2005-2006},
}
TY - JOUR
AU - Jaming, Philippe
TI - Uncertainty principles for orthonormal bases
JO - Séminaire Équations aux dérivées partielles
PY - 2005-2006
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2005-2006
SP - 1
EP - 14
AB - In this survey, we present various forms of the uncertainty principle (Hardy, Heisenberg, Benedicks...). We further give a new interpretation of the uncertainty principles as a statement about the time-frequency localization of elements of an orthonormal basis, which improves previous unpublished results of H. Shapiro.Finally, we reformulate some uncertainty principles in terms of properties of the free heat and shrödinger equations.
LA - eng
KW - Uncertainty principles; orthonormal bases
UR - http://eudml.org/doc/11127
ER -
References
top- W. O. Amrein & A. M. BerthierOn support properties of -functions and their Fourier transforms. J. Functional Analysis 24 (1977), 258–267. Zbl0355.42015MR461025
- R. BalianUn principe d’incertitude fort en théorie du signal ou en mécanique quantique. C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre 292 (1981), 1357–1362.
- M. BenedicksOn Fourier transforms of functions supported on sets of finite Lebesgue measure. J. Math. Anal. Appl. 106 (1985), 180–183. Zbl0576.42016MR780328
- A. Bonami & B. DemangeA survey on the uncertainty principle for quadratic forms à parraiître dans Collecteana Math.
- A. Bonami, B. Demange & Ph. JamingHermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms. Rev. Mat. Iberoamericana 19 (2003), 23–55 Zbl1037.42010MR1993414
- M. G. Cowling & J. F. PriceBandwidth versus time concentration: the Heisenberg-Pauli-Weyl inequality. SIAM J. Math. Anal. 15 (1984) 151–165. MR728691
- N. G. de BruijnUncertainty principles in Fourier analysis. in Inequalities. (O. Shisha, ed.) Academic Press, New York (1967) 55–71. MR219977
- B. DemangePrincipes d’incertitude associés à des formes quadratiques non dégénérées Thèse de l’université d’Orléans, 2004.
- P. Delsarte, J. M. Goethals & J. J. SeidelSpherical codes and designs Geometrica Dedicata 6 (1977) 363–388. Zbl0376.05015MR485471
- L. Escauriaza, C. E. Kenig & L. VegaDecay at infinity of caloric functions within characteristic hyperplane. preprint.
- L. Escauriaza, C. E. Kenig, G. Ponce & L. VegaOn unique continuation for Schroedinger equation. to appear in Comm. Part. Diff. Eq.
- W.G. FarisInequalities and uncertainty principles. J. Math. Phys. 19 (1978), 461–466. MR484134
- G. B. Folland & A. SitaramThe uncertainty principle — a mathematical survey. J. Fourier Anal. Appl. 3 (1997), 207–238. Zbl0885.42006MR1448337
- G. H. HardyA theorem concerning Fourier transforms. J. London Math. Soc. 8 (1933), 227–231. Zbl0007.30403
- V. Havin & B. JörickeThe uncertainty principle in harmonic analysis. Springer-Verlag, Berlin, 1994. Zbl0827.42001MR1303780
- Ph. Jaming & A. PowellUncertainty principles for orthonormal bases. preprint 2006.
- O. KovrijkineSome results related to the Logvinenko-Sereda theorem. Proc. Amer. Math. Soc. 129 (2001) 3037–3047. Zbl0976.42004MR1840110
- F. LowComplete sets of wave packets. in A Passion for Physics—Essays in Honor of Geoffrey Chew, edited by C. DeTar et al. (World Scientific, Singapore, 1985), pp. 17–22.
- H. J. Landau & H. O. Pollak,Prolate spheroidal wave functions, Fourier analysis and uncertainty. II. Bell System Tech. J. 40 (1961), 65–84. Zbl0184.08602MR140733
- H. J. Landau & H. O. Pollak,Prolate spheroidal wave functions, Fourier analysis and uncertainty. III. The dimension of the space of essentially time- and band-limited signals. Bell System Tech. J. 41 (1962), 1295–1336. Zbl0184.08603MR147686
- V. N. Logvinenko & Ju. F. Sereda,Equivalent norms in spaces of entire functions of exponential type. (Russian) Teor. FunkciĭFunkcional. Anal. i Priložen. Vyp. 20 (1974), 102–111, 175. Zbl0312.46039MR477719
- F. L. NazarovLocal estimates for exponential polynomials and their applications to inequalities of the uncertainty principle type. (Russian) Algebra i Analiz 5 (1993), 3–66; translation in St. Petersburg Math. J. 5 (1994), 663–717. Zbl0822.42001MR1246419
- B. PaneahSupport-dependent weighted norm estimates for Fourier transforms. J. Math. Anal. Appl. 189 (1995), 552–574. Zbl0831.42006MR1312061
- B. PaneahSupport-dependent weighted norm estimates for Fourier transforms. II. Duke Math. J. 92 (1998), 35–353. Zbl1039.42006MR1612797
- A. M. PowellTime-frequency mean and variance sequences of orthonormal bases. J. Fourier Anal. Appl. 11 (2005), 375–387. Zbl1087.42003MR2169472
- J. F. PriceInequalities and local uncertainty principles. J. Math. Phys. 24 (1983), 1711-1714. Zbl0513.60100MR709504
- J. F. Price & A. SitaramLocal uncertainty inequalities for locally compact groups. Trans. Amer. Math. Soc. 308 (1988), 105-114. Zbl0659.43004MR946433
- H. S. ShapiroUncertainty principles for basis in , unpublished manuscript (1991).
- H. S. ShapiroUncertainty principles for basis in , Proceedings of the conference on Harmonic Analysis and Number Theory, CIRM, Marseille-Luminy, october 16-21, 2005, L. Habsieger, A. Plagne & B. Saffari (Eds). In preparation
- D. Slepian & H. O. PollakProlate spheroidal wave functions, Fourier analysis and uncertainty. I. Bell System Tech. J. 40 (1961), 43–63. Zbl0184.08601MR140732
- D. SlepianProlate spheroidal wave functions, Fourier analysis and uncertainity. IV. Extensions to many dimensions; generalized prolate spheroidal functions. Bell System Tech. J. 43 (1964), 3009–3057. Zbl0184.08604MR181766
- D. SlepianSome comments on Fourier analysis, uncertainty and modeling. SIAM Rev. 25 (1983), 379–393. Zbl0571.94004MR710468
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.