Quelques résultats d’hypocoercitivité en théorie cinétique collisionnelle

Clément Mouhot[1]

  • [1] Ceremade (UMR CNRS no. 7534), Université Paris-Dauphine, Place de Lattre de Tassigny, F-75775 Paris Cédex 16, France

Séminaire Équations aux dérivées partielles (2007-2008)

  • Volume: 2007-2008, page 1-19

Abstract

top
Nous présentons une introduction à un nouveau champ de recherche, l’hypocoercitivité. Nous énonçons quelques résultats obtenus récemment avec différents co-auteurs (Lukas Neumann, Jean Dolbeault, Christian Schmeiser) dans le cas des équations cinétiques collisionnelles, en particulier pour les équations de type Boltzmann. Puis nous présentons quelques perspectives de recherche à plus long terme, dans le but de dégager une théorie unifiée de l’hypocoercitivité en théorie cinétique collisionnelle.

How to cite

top

Mouhot, Clément. "Quelques résultats d’hypocoercitivité en théorie cinétique collisionnelle." Séminaire Équations aux dérivées partielles 2007-2008 (2007-2008): 1-19. <http://eudml.org/doc/11172>.

@article{Mouhot2007-2008,
abstract = {Nous présentons une introduction à un nouveau champ de recherche, l’hypocoercitivité. Nous énonçons quelques résultats obtenus récemment avec différents co-auteurs (Lukas Neumann, Jean Dolbeault, Christian Schmeiser) dans le cas des équations cinétiques collisionnelles, en particulier pour les équations de type Boltzmann. Puis nous présentons quelques perspectives de recherche à plus long terme, dans le but de dégager une théorie unifiée de l’hypocoercitivité en théorie cinétique collisionnelle.},
affiliation = {Ceremade (UMR CNRS no. 7534), Université Paris-Dauphine, Place de Lattre de Tassigny, F-75775 Paris Cédex 16, France},
author = {Mouhot, Clément},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {hypocoercivity; Boltzmann equation; Landau equation},
language = {fre},
pages = {1-19},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Quelques résultats d’hypocoercitivité en théorie cinétique collisionnelle},
url = {http://eudml.org/doc/11172},
volume = {2007-2008},
year = {2007-2008},
}

TY - JOUR
AU - Mouhot, Clément
TI - Quelques résultats d’hypocoercitivité en théorie cinétique collisionnelle
JO - Séminaire Équations aux dérivées partielles
PY - 2007-2008
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2007-2008
SP - 1
EP - 19
AB - Nous présentons une introduction à un nouveau champ de recherche, l’hypocoercitivité. Nous énonçons quelques résultats obtenus récemment avec différents co-auteurs (Lukas Neumann, Jean Dolbeault, Christian Schmeiser) dans le cas des équations cinétiques collisionnelles, en particulier pour les équations de type Boltzmann. Puis nous présentons quelques perspectives de recherche à plus long terme, dans le but de dégager une théorie unifiée de l’hypocoercitivité en théorie cinétique collisionnelle.
LA - fre
KW - hypocoercivity; Boltzmann equation; Landau equation
UR - http://eudml.org/doc/11172
ER -

References

top
  1. R. Alexandre, L. Desvillettes, C. Villani, and B. Wennberg, Entropy dissipation and long-range interactions, Arch. Ration. Mech. Anal. 152 (2000), no. 4, 327–355. MR 2001c :82061 Zbl0968.76076MR1765272
  2. R. Alexandre and C. Villani, On the Landau approximation in plasma physics, Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004), no. 1, 61–95. MR MR2037247 (2005f :82126) Zbl1044.83007MR2037247
  3. A. A. Arsenʼev and O. E. Buryak, On a connection between the solution of the Boltzmann equation and the solution of the Landau-Fokker-Planck equation, Mat. Sb. 181 (1990), no. 4, 435–446. MR MR1055522 (91f :35266) Zbl0713.35075MR1055522
  4. Céline Baranger and Clément Mouhot, Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials, Rev. Mat. Iberoamericana 21 (2005), no. 3, 819–841. MR MR2231011 (2007f :82031) Zbl1092.76057MR2231011
  5. A. V. Bobylëv, The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules, Mathematical physics reviews, Vol. 7, Harwood Academic Publ., Chur, 1988, pp. 111–233. MR 92m :82112 Zbl0850.76619MR1128328
  6. A. V. Bobylev, P. Dukes, R. Illner, and H. D. Victory, Jr., On Vlasov-Manev equations. I. Foundations, properties, and nonglobal existence, J. Statist. Phys. 88 (1997), no. 3-4, 885–911. MR 98j :85001 Zbl0917.45007MR1467635
  7. Alexander V. Bobylev and Carlo Cercignani, On the rate of entropy production for the Boltzmann equation, J. Statist. Phys. 94 (1999), no. 3-4, 603–618. MR 2000f :82083 Zbl0958.82040MR1675366
  8. Russel E. Caflisch, The Boltzmann equation with a soft potential. I. Linear, spatially-homogeneous, Comm. Math. Phys. 74 (1980), no. 1, 71–95. MR 82j :82040a Zbl0434.76065MR575897
  9. Russel E. Caflisch and Basil Nicolaenko, Shock profile solutions of the Boltzmann equation, Comm. Math. Phys. 86 (1982), no. 2, 161–194. MR MR676183 (84d :82022) Zbl0544.76063MR676183
  10. T. Carleman, Problèmes mathématiques dans la théorie cinétique des gaz, Almqvist & Wiksell, 1957. Zbl0077.23401MR98477
  11. E. A. Carlen and M. C. Carvalho, Strict entropy production bounds and stability of the rate of convergence to equilibrium for the Boltzmann equation, J. Statist. Phys. 67 (1992), no. 3-4, 575–608. MR MR1171145 (93h :82049) Zbl0899.76317MR1171145
  12. —, Entropy production estimates for Boltzmann equations with physically realistic collision kernels, J. Statist. Phys. 74 (1994), no. 3-4, 743–782. MR MR1263387 (95g :82073) Zbl0831.76074MR1263387
  13. P. Degond and M. Lemou, Dispersion relations for the linearized Fokker-Planck equation, Arch. Rational Mech. Anal. 138 (1997), no. 2, 137–167. MR 99f :82051 Zbl0888.35084MR1463805
  14. P. Degond and B. Lucquin-Desreux, The Fokker-Planck asymptotics of the Boltzmann collision operator in the Coulomb case, Math. Models Methods Appl. Sci. 2 (1992), no. 2, 167–182. MR MR1167768 (93g :82083) Zbl0755.35091MR1167768
  15. L. Desvillettes, Entropy dissipation rate and convergence in kinetic equations, Comm. Math. Phys. 123 (1989), no. 4, 687–702. MR MR1006301 (90g :82050) Zbl0688.76057MR1006301
  16. —, On asymptotics of the Boltzmann equation when the collisions become grazing, Transport Theory Statist. Phys. 21 (1992), no. 3, 259–276. MR MR1165528 (93h :82051) Zbl0769.76059MR1165528
  17. L. Desvillettes and C. Villani, On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems : the linear Fokker-Planck equation, Comm. Pure Appl. Math. 54 (2001), no. 1, 1–42. MR MR1787105 (2001h :82079) Zbl1029.82032MR1787105
  18. —, On the trend to global equilibrium for spatially inhomogeneous kinetic systems : the Boltzmann equation, Invent. Math. 159 (2005), no. 2, 245–316. MR MR2116276 (2005j :82070) Zbl1162.82316MR2116276
  19. Laurent Desvillettes, Une minoration du terme de dissipation d’entropie pour le modèle de Kac de la cinétique des gaz, C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre 307 (1988), no. 19, 1955–1960. MR MR980768 (90g :82051) Zbl0657.76067
  20. Laurent Desvillettes and Clément Mouhot, Stability and uniqueness for the spatially homogeneous boltzmann equation with long-range interactions, To appear in Arch. Rational Mech. Anal., arXiv :0606307. Zbl1169.76054
  21. Jean Dolbeault, Peter Markowich, Dietmar Oelz, and Christian Schmeiser, Non linear diffusions as limit of kinetic equations with relaxation collision kernels, Arch. Ration. Mech. Anal. 186 (2007), no. 1, 133–158. MR MR2338354 Zbl1148.76047MR2338354
  22. Jean Dolbeault, Clément Mouhot, and Christian Schmeiser, Hypocoercivity and stability for a class kinetic models with mass conservation and a confining potential, In preparation, 2008. Zbl06429109
  23. J.-P. Eckmann and M. Hairer, Spectral properties of hypoelliptic operators, Comm. Math. Phys. 235 (2003), no. 2, 233–253. MR MR1969727 (2004c :35060) Zbl1040.35016MR1969727
  24. Richard S. Ellis and Mark A. Pinsky, The first and second fluid approximations to the linearized Boltzmann equation, J. Math. Pures Appl. (9) 54 (1975), 125–156. MR 58 #29430b Zbl0286.35062MR609540
  25. Nicolas Fournier, Uniqueness for a class of spatially homogeneous Boltzmann equations without angular cutoff, J. Stat. Phys. 125 (2006), no. 4, 927–946. MR MR2283785 (2007i :82067) Zbl1107.82045MR2283785
  26. Nicolas Fournier and Clément Mouhot, On the well-posedness of the spatially homogeneous boltzmann equation with a moderate angular singularity, Preprint 2007, arXiv :0703283. Zbl1175.76129
  27. François Golse and Frédéric Poupaud, Un résultat de compacité pour l’équation de Boltzmann avec potentiel mou. Application au problème de demi-espace, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 12, 583–586. MR 87m :35190 Zbl0604.76067
  28. Harold Grad, Asymptotic theory of the Boltzmann equation. II, Rarefied Gas Dynamics (Proc. 3rd Internat. Sympos., Palais de l’UNESCO, Paris, 1962), Vol. I, Academic Press, New York, 1963, pp. 26–59. MR 27 #6577 
  29. Hélène Guérin and Nicolas Fournier, On the uniqueness for the spatially homogeneous boltzmann equation with a strong angular singularity, To appear in J. Stat. Phys., arXiv :0710.2460. Zbl1144.82060MR2398952
  30. Yan Guo, The Landau equation in a periodic box, Comm. Math. Phys. 231 (2002), no. 3, 391–434. MR MR1946444 (2004c :82121) Zbl1042.76053MR1946444
  31. —, The Vlasov-Poisson-Boltzmann system near Maxwellians, Comm. Pure Appl. Math. 55 (2002), no. 9, 1104–1135. MR MR1908664 (2003b :82050) Zbl1027.82035MR1908664
  32. —, Classical solutions to the Boltzmann equation for molecules with an angular cutoff, Arch. Ration. Mech. Anal. 169 (2003), no. 4, 305–353. MR MR2013332 (2004i :82054) Zbl1044.76056MR2013332
  33. —, The Vlasov-Maxwell-Boltzmann system near Maxwellians, Invent. Math. 153 (2003), no. 3, 593–630. MR MR2000470 (2004m :82123) Zbl1029.82034MR2000470
  34. —, The Boltzmann equation in the whole space, Indiana Univ. Math. J. 53 (2004), no. 4, 1081–1094. MR MR2095473 (2005g :35028) Zbl1065.35090MR2095473
  35. Bernard Helffer and Francis Nier, Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians, Lecture Notes in Mathematics, vol. 1862, Springer-Verlag, Berlin, 2005. MR MR2130405 (2006a :58039) Zbl1072.35006MR2130405
  36. Frédéric Hérau, Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation, Asymptot. Anal. 46 (2006), no. 3-4, 349–359. MR MR2215889 (2007b :35044) Zbl1096.35019MR2215889
  37. Frédéric Hérau and Francis Nier, Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential, Arch. Ration. Mech. Anal. 171 (2004), no. 2, 151–218. MR MR2034753 (2005f :82085) Zbl1139.82323MR2034753
  38. D. Hilbert, Grundzüge einer Allgemeinen Theorie der Linearen Integralgleichungen, Math. Ann. 72 (1912), Chelsea Publ., New York, 1953. Zbl0050.10201MR56184
  39. Lars Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171. MR MR0222474 (36 #5526) Zbl0156.10701MR222474
  40. M. Klaus, Boltzmann collision operator without cut-off, Helv. Phys. Acta 50 (1977), no. 6, 893–903. MR 58 #25683 MR523550
  41. Pierre-Louis Lions, Régularité et compacité pour des noyaux de collision de Boltzmann sans troncature angulaire, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), no. 1, 37–41. MR 99h :82062 Zbl0920.35114MR1649477
  42. Tai-Ping Liu, Tong Yang, and Shih-Hsien Yu, Energy method for Boltzmann equation, Phys. D 188 (2004), no. 3-4, 178–192. MR MR2043729 (2005a :82091) Zbl1098.82618MR2043729
  43. Tai-Ping Liu and Shih-Hsien Yu, Boltzmann equation : micro-macro decompositions and positivity of shock profiles, Comm. Math. Phys. 246 (2004), no. 1, 133–179. MR MR2044894 (2005f :82101) Zbl1092.82034MR2044894
  44. —, The Green’s function and large-time behavior of solutions for the one-dimensional Boltzmann equation, Comm. Pure Appl. Math. 57 (2004), no. 12, 1543–1608. MR MR2082240 (2005m :82132) Zbl1111.76047
  45. —, Green’s function of Boltzmann equation, 3-D waves, Bull. Inst. Math. Acad. Sin. (N.S.) 1 (2006), no. 1, 1–78. MR MR2230121 (2007k :82116) Zbl1096.76051
  46. N. B. Maslova and A. N. Firsov, Solution of the Cauchy problem for the Boltzmann equation. I. Existence and uniqueness theorem, Vestnik Leningrad. Univ. (1975), no. 19 Mat. Meh. Astronom. vyp. 4, 83–88, 168. MR MR0406280 (53 #10071) Zbl0325.76105MR406280
  47. —, Solution of the Cauchy problem for the Boltzmann equation. II. Estimates of the solutions of the nonhomogeneous linearized equation, Vestnik Leningrad. Univ. (1976), no. 1 Mat. Meh. Astronom. vyp. 1, 97–103, 162. MR MR0438914 (55 #11818) Zbl0371.76062MR438914
  48. Clément Mouhot, Explicit coercivity estimates for the linearized Boltzmann and Landau operators, Comm. Partial Differential Equations 31 (2006), no. 7-9, 1321–1348. MR MR2254617 (2007h :35020) Zbl1101.76053MR2254617
  49. —, Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials, Comm. Math. Phys. 261 (2006), no. 3, 629–672. MR MR2197542 (2006k :82134) Zbl1113.82062MR2197542
  50. Clément Mouhot and Lukas Neumann, Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus, Nonlinearity 19 (2006), no. 4, 969–998. MR MR2214953 (2007c :82032) Zbl1169.82306MR2214953
  51. Clément Mouhot and Robert M. Strain, Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff, J. Math. Pures Appl. (9) 87 (2007), no. 5, 515–535. MR MR2322149 (2008g :82116) Zbl05163855MR2322149
  52. Takaaki Nishida and Kazuo Imai, Global solutions to the initial value problem for the nonlinear Boltzmann equation, Publ. Res. Inst. Math. Sci. 12 (1976/77), no. 1, 229–239. MR MR0432105 (55 #5096) Zbl0344.35003MR432105
  53. Young Ping Pao, Boltzmann collision operator with inverse-power intermolecular potentials. I, II, Comm. Pure Appl. Math. 27 (1974), 407–428 ; ibid. 27 (1974), 559–581. MR MR0636407 (58 #30519) Zbl0304.45010MR636407
  54. Yasushi Shizuta, On the classical solutions of the Boltzmann equation, Comm. Pure Appl. Math. 36 (1983), no. 6, 705–754. MR MR720591 (85e :76043) Zbl0515.35002MR720591
  55. Yasushi Shizuta and Kiyoshi Asano, Global solutions of the Boltzmann equation in a bounded convex domain, Proc. Japan Acad. Ser. A Math. Sci. 53 (1977), no. 1, 3–5. MR MR0466988 (57 #6861) Zbl0382.35047MR466988
  56. Robert M. Strain and Yan Guo, Stability of the relativistic Maxwellian in a collisional plasma, Comm. Math. Phys. 251 (2004), no. 2, 263–320. MR MR2100057 (2005m :82155) Zbl1113.82070MR2100057
  57. —, Almost exponential decay near Maxwellian, Comm. Partial Differential Equations 31 (2006), no. 1-3, 417–429. MR MR2209761 (2006m :82042) Zbl1096.82010MR2209761
  58. —, Exponential decay for soft potentials near Maxwellian, Arch. Ration. Mech. Anal. 187 (2008), no. 2, 287–339. MR MR2366140 Zbl1130.76069MR2366140
  59. G. Toscani and C. Villani, Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation, Comm. Math. Phys. 203 (1999), no. 3, 667–706. MR MR1700142 (2000e :82039) Zbl0944.35066MR1700142
  60. —, On the trend to equilibrium for some dissipative systems with slowly increasing a priori bounds, J. Statist. Phys. 98 (2000), no. 5-6, 1279–1309. MR MR1751701 (2001g :82069) Zbl1034.82032MR1751701
  61. Seiji Ukai, On the existence of global solutions of mixed problem for non-linear Boltzmann equation, Proc. Japan Acad. 50 (1974), 179–184. MR MR0363332 (50 #15770) Zbl0312.35061MR363332
  62. —, Les solutions globales de l’équation de Boltzmann dans l’espace tout entier et dans le demi-espace, C. R. Acad. Sci. Paris Sér. A-B 282 (1976), no. 6, Ai, A317–A320. MR MR0445138 (56 #3482) Zbl0345.45012
  63. Cédric Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations, Arch. Rational Mech. Anal. 143 (1998), no. 3, 273–307. MR MR1650006 (99j :82065) Zbl0912.45011MR1650006
  64. —, Regularity estimates via the entropy dissipation for the spatially homogeneous Boltzmann equation without cut-off, Rev. Mat. Iberoamericana 15 (1999), no. 2, 335–352. MR 2000f :82090 Zbl0934.45010MR1715411
  65. —, Contribution à l’étude mathématique des collisions en théorie cinétique, Master’s thesis, Univ. Paris Dauphine, France, 2000. 
  66. —, A review of mathematical topics in collisional kinetic theory, Handbook of mathematical fluid dynamics, Vol. I, North-Holland, Amsterdam, 2002, pp. 71–305. MR MR1942465 (2003k :82087) Zbl1170.82369MR1942465
  67. —, Cercignani’s conjecture is sometimes true and always almost true, Comm. Math. Phys. 234 (2003), no. 3, 455–490. MR 2004b :82048 Zbl1041.82018
  68. —, Hypocoercivity, To appear, 2008. 
  69. C. S. Wang Chang, G. E. Uhlenbeck, and J. de Boer, Studies in Statistical Mechanics, Vol. V, North-Holland, Amsterdam, 1970. MR 29 #6881 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.