Quelques résultats d’hypocoercitivité en théorie cinétique collisionnelle
- [1] Ceremade (UMR CNRS no. 7534), Université Paris-Dauphine, Place de Lattre de Tassigny, F-75775 Paris Cédex 16, France
Séminaire Équations aux dérivées partielles (2007-2008)
- Volume: 2007-2008, page 1-19
Access Full Article
topAbstract
topHow to cite
topMouhot, Clément. "Quelques résultats d’hypocoercitivité en théorie cinétique collisionnelle." Séminaire Équations aux dérivées partielles 2007-2008 (2007-2008): 1-19. <http://eudml.org/doc/11172>.
@article{Mouhot2007-2008,
abstract = {Nous présentons une introduction à un nouveau champ de recherche, l’hypocoercitivité. Nous énonçons quelques résultats obtenus récemment avec différents co-auteurs (Lukas Neumann, Jean Dolbeault, Christian Schmeiser) dans le cas des équations cinétiques collisionnelles, en particulier pour les équations de type Boltzmann. Puis nous présentons quelques perspectives de recherche à plus long terme, dans le but de dégager une théorie unifiée de l’hypocoercitivité en théorie cinétique collisionnelle.},
affiliation = {Ceremade (UMR CNRS no. 7534), Université Paris-Dauphine, Place de Lattre de Tassigny, F-75775 Paris Cédex 16, France},
author = {Mouhot, Clément},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {hypocoercivity; Boltzmann equation; Landau equation},
language = {fre},
pages = {1-19},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Quelques résultats d’hypocoercitivité en théorie cinétique collisionnelle},
url = {http://eudml.org/doc/11172},
volume = {2007-2008},
year = {2007-2008},
}
TY - JOUR
AU - Mouhot, Clément
TI - Quelques résultats d’hypocoercitivité en théorie cinétique collisionnelle
JO - Séminaire Équations aux dérivées partielles
PY - 2007-2008
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2007-2008
SP - 1
EP - 19
AB - Nous présentons une introduction à un nouveau champ de recherche, l’hypocoercitivité. Nous énonçons quelques résultats obtenus récemment avec différents co-auteurs (Lukas Neumann, Jean Dolbeault, Christian Schmeiser) dans le cas des équations cinétiques collisionnelles, en particulier pour les équations de type Boltzmann. Puis nous présentons quelques perspectives de recherche à plus long terme, dans le but de dégager une théorie unifiée de l’hypocoercitivité en théorie cinétique collisionnelle.
LA - fre
KW - hypocoercivity; Boltzmann equation; Landau equation
UR - http://eudml.org/doc/11172
ER -
References
top- R. Alexandre, L. Desvillettes, C. Villani, and B. Wennberg, Entropy dissipation and long-range interactions, Arch. Ration. Mech. Anal. 152 (2000), no. 4, 327–355. MR 2001c :82061 Zbl0968.76076MR1765272
- R. Alexandre and C. Villani, On the Landau approximation in plasma physics, Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004), no. 1, 61–95. MR MR2037247 (2005f :82126) Zbl1044.83007MR2037247
- A. A. Arsenʼev and O. E. Buryak, On a connection between the solution of the Boltzmann equation and the solution of the Landau-Fokker-Planck equation, Mat. Sb. 181 (1990), no. 4, 435–446. MR MR1055522 (91f :35266) Zbl0713.35075MR1055522
- Céline Baranger and Clément Mouhot, Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials, Rev. Mat. Iberoamericana 21 (2005), no. 3, 819–841. MR MR2231011 (2007f :82031) Zbl1092.76057MR2231011
- A. V. Bobylëv, The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules, Mathematical physics reviews, Vol. 7, Harwood Academic Publ., Chur, 1988, pp. 111–233. MR 92m :82112 Zbl0850.76619MR1128328
- A. V. Bobylev, P. Dukes, R. Illner, and H. D. Victory, Jr., On Vlasov-Manev equations. I. Foundations, properties, and nonglobal existence, J. Statist. Phys. 88 (1997), no. 3-4, 885–911. MR 98j :85001 Zbl0917.45007MR1467635
- Alexander V. Bobylev and Carlo Cercignani, On the rate of entropy production for the Boltzmann equation, J. Statist. Phys. 94 (1999), no. 3-4, 603–618. MR 2000f :82083 Zbl0958.82040MR1675366
- Russel E. Caflisch, The Boltzmann equation with a soft potential. I. Linear, spatially-homogeneous, Comm. Math. Phys. 74 (1980), no. 1, 71–95. MR 82j :82040a Zbl0434.76065MR575897
- Russel E. Caflisch and Basil Nicolaenko, Shock profile solutions of the Boltzmann equation, Comm. Math. Phys. 86 (1982), no. 2, 161–194. MR MR676183 (84d :82022) Zbl0544.76063MR676183
- T. Carleman, Problèmes mathématiques dans la théorie cinétique des gaz, Almqvist & Wiksell, 1957. Zbl0077.23401MR98477
- E. A. Carlen and M. C. Carvalho, Strict entropy production bounds and stability of the rate of convergence to equilibrium for the Boltzmann equation, J. Statist. Phys. 67 (1992), no. 3-4, 575–608. MR MR1171145 (93h :82049) Zbl0899.76317MR1171145
- —, Entropy production estimates for Boltzmann equations with physically realistic collision kernels, J. Statist. Phys. 74 (1994), no. 3-4, 743–782. MR MR1263387 (95g :82073) Zbl0831.76074MR1263387
- P. Degond and M. Lemou, Dispersion relations for the linearized Fokker-Planck equation, Arch. Rational Mech. Anal. 138 (1997), no. 2, 137–167. MR 99f :82051 Zbl0888.35084MR1463805
- P. Degond and B. Lucquin-Desreux, The Fokker-Planck asymptotics of the Boltzmann collision operator in the Coulomb case, Math. Models Methods Appl. Sci. 2 (1992), no. 2, 167–182. MR MR1167768 (93g :82083) Zbl0755.35091MR1167768
- L. Desvillettes, Entropy dissipation rate and convergence in kinetic equations, Comm. Math. Phys. 123 (1989), no. 4, 687–702. MR MR1006301 (90g :82050) Zbl0688.76057MR1006301
- —, On asymptotics of the Boltzmann equation when the collisions become grazing, Transport Theory Statist. Phys. 21 (1992), no. 3, 259–276. MR MR1165528 (93h :82051) Zbl0769.76059MR1165528
- L. Desvillettes and C. Villani, On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems : the linear Fokker-Planck equation, Comm. Pure Appl. Math. 54 (2001), no. 1, 1–42. MR MR1787105 (2001h :82079) Zbl1029.82032MR1787105
- —, On the trend to global equilibrium for spatially inhomogeneous kinetic systems : the Boltzmann equation, Invent. Math. 159 (2005), no. 2, 245–316. MR MR2116276 (2005j :82070) Zbl1162.82316MR2116276
- Laurent Desvillettes, Une minoration du terme de dissipation d’entropie pour le modèle de Kac de la cinétique des gaz, C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre 307 (1988), no. 19, 1955–1960. MR MR980768 (90g :82051) Zbl0657.76067
- Laurent Desvillettes and Clément Mouhot, Stability and uniqueness for the spatially homogeneous boltzmann equation with long-range interactions, To appear in Arch. Rational Mech. Anal., arXiv :0606307. Zbl1169.76054
- Jean Dolbeault, Peter Markowich, Dietmar Oelz, and Christian Schmeiser, Non linear diffusions as limit of kinetic equations with relaxation collision kernels, Arch. Ration. Mech. Anal. 186 (2007), no. 1, 133–158. MR MR2338354 Zbl1148.76047MR2338354
- Jean Dolbeault, Clément Mouhot, and Christian Schmeiser, Hypocoercivity and stability for a class kinetic models with mass conservation and a confining potential, In preparation, 2008. Zbl06429109
- J.-P. Eckmann and M. Hairer, Spectral properties of hypoelliptic operators, Comm. Math. Phys. 235 (2003), no. 2, 233–253. MR MR1969727 (2004c :35060) Zbl1040.35016MR1969727
- Richard S. Ellis and Mark A. Pinsky, The first and second fluid approximations to the linearized Boltzmann equation, J. Math. Pures Appl. (9) 54 (1975), 125–156. MR 58 #29430b Zbl0286.35062MR609540
- Nicolas Fournier, Uniqueness for a class of spatially homogeneous Boltzmann equations without angular cutoff, J. Stat. Phys. 125 (2006), no. 4, 927–946. MR MR2283785 (2007i :82067) Zbl1107.82045MR2283785
- Nicolas Fournier and Clément Mouhot, On the well-posedness of the spatially homogeneous boltzmann equation with a moderate angular singularity, Preprint 2007, arXiv :0703283. Zbl1175.76129
- François Golse and Frédéric Poupaud, Un résultat de compacité pour l’équation de Boltzmann avec potentiel mou. Application au problème de demi-espace, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 12, 583–586. MR 87m :35190 Zbl0604.76067
- Harold Grad, Asymptotic theory of the Boltzmann equation. II, Rarefied Gas Dynamics (Proc. 3rd Internat. Sympos., Palais de l’UNESCO, Paris, 1962), Vol. I, Academic Press, New York, 1963, pp. 26–59. MR 27 #6577
- Hélène Guérin and Nicolas Fournier, On the uniqueness for the spatially homogeneous boltzmann equation with a strong angular singularity, To appear in J. Stat. Phys., arXiv :0710.2460. Zbl1144.82060MR2398952
- Yan Guo, The Landau equation in a periodic box, Comm. Math. Phys. 231 (2002), no. 3, 391–434. MR MR1946444 (2004c :82121) Zbl1042.76053MR1946444
- —, The Vlasov-Poisson-Boltzmann system near Maxwellians, Comm. Pure Appl. Math. 55 (2002), no. 9, 1104–1135. MR MR1908664 (2003b :82050) Zbl1027.82035MR1908664
- —, Classical solutions to the Boltzmann equation for molecules with an angular cutoff, Arch. Ration. Mech. Anal. 169 (2003), no. 4, 305–353. MR MR2013332 (2004i :82054) Zbl1044.76056MR2013332
- —, The Vlasov-Maxwell-Boltzmann system near Maxwellians, Invent. Math. 153 (2003), no. 3, 593–630. MR MR2000470 (2004m :82123) Zbl1029.82034MR2000470
- —, The Boltzmann equation in the whole space, Indiana Univ. Math. J. 53 (2004), no. 4, 1081–1094. MR MR2095473 (2005g :35028) Zbl1065.35090MR2095473
- Bernard Helffer and Francis Nier, Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians, Lecture Notes in Mathematics, vol. 1862, Springer-Verlag, Berlin, 2005. MR MR2130405 (2006a :58039) Zbl1072.35006MR2130405
- Frédéric Hérau, Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation, Asymptot. Anal. 46 (2006), no. 3-4, 349–359. MR MR2215889 (2007b :35044) Zbl1096.35019MR2215889
- Frédéric Hérau and Francis Nier, Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential, Arch. Ration. Mech. Anal. 171 (2004), no. 2, 151–218. MR MR2034753 (2005f :82085) Zbl1139.82323MR2034753
- D. Hilbert, Grundzüge einer Allgemeinen Theorie der Linearen Integralgleichungen, Math. Ann. 72 (1912), Chelsea Publ., New York, 1953. Zbl0050.10201MR56184
- Lars Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171. MR MR0222474 (36 #5526) Zbl0156.10701MR222474
- M. Klaus, Boltzmann collision operator without cut-off, Helv. Phys. Acta 50 (1977), no. 6, 893–903. MR 58 #25683 MR523550
- Pierre-Louis Lions, Régularité et compacité pour des noyaux de collision de Boltzmann sans troncature angulaire, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), no. 1, 37–41. MR 99h :82062 Zbl0920.35114MR1649477
- Tai-Ping Liu, Tong Yang, and Shih-Hsien Yu, Energy method for Boltzmann equation, Phys. D 188 (2004), no. 3-4, 178–192. MR MR2043729 (2005a :82091) Zbl1098.82618MR2043729
- Tai-Ping Liu and Shih-Hsien Yu, Boltzmann equation : micro-macro decompositions and positivity of shock profiles, Comm. Math. Phys. 246 (2004), no. 1, 133–179. MR MR2044894 (2005f :82101) Zbl1092.82034MR2044894
- —, The Green’s function and large-time behavior of solutions for the one-dimensional Boltzmann equation, Comm. Pure Appl. Math. 57 (2004), no. 12, 1543–1608. MR MR2082240 (2005m :82132) Zbl1111.76047
- —, Green’s function of Boltzmann equation, 3-D waves, Bull. Inst. Math. Acad. Sin. (N.S.) 1 (2006), no. 1, 1–78. MR MR2230121 (2007k :82116) Zbl1096.76051
- N. B. Maslova and A. N. Firsov, Solution of the Cauchy problem for the Boltzmann equation. I. Existence and uniqueness theorem, Vestnik Leningrad. Univ. (1975), no. 19 Mat. Meh. Astronom. vyp. 4, 83–88, 168. MR MR0406280 (53 #10071) Zbl0325.76105MR406280
- —, Solution of the Cauchy problem for the Boltzmann equation. II. Estimates of the solutions of the nonhomogeneous linearized equation, Vestnik Leningrad. Univ. (1976), no. 1 Mat. Meh. Astronom. vyp. 1, 97–103, 162. MR MR0438914 (55 #11818) Zbl0371.76062MR438914
- Clément Mouhot, Explicit coercivity estimates for the linearized Boltzmann and Landau operators, Comm. Partial Differential Equations 31 (2006), no. 7-9, 1321–1348. MR MR2254617 (2007h :35020) Zbl1101.76053MR2254617
- —, Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials, Comm. Math. Phys. 261 (2006), no. 3, 629–672. MR MR2197542 (2006k :82134) Zbl1113.82062MR2197542
- Clément Mouhot and Lukas Neumann, Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus, Nonlinearity 19 (2006), no. 4, 969–998. MR MR2214953 (2007c :82032) Zbl1169.82306MR2214953
- Clément Mouhot and Robert M. Strain, Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff, J. Math. Pures Appl. (9) 87 (2007), no. 5, 515–535. MR MR2322149 (2008g :82116) Zbl05163855MR2322149
- Takaaki Nishida and Kazuo Imai, Global solutions to the initial value problem for the nonlinear Boltzmann equation, Publ. Res. Inst. Math. Sci. 12 (1976/77), no. 1, 229–239. MR MR0432105 (55 #5096) Zbl0344.35003MR432105
- Young Ping Pao, Boltzmann collision operator with inverse-power intermolecular potentials. I, II, Comm. Pure Appl. Math. 27 (1974), 407–428 ; ibid. 27 (1974), 559–581. MR MR0636407 (58 #30519) Zbl0304.45010MR636407
- Yasushi Shizuta, On the classical solutions of the Boltzmann equation, Comm. Pure Appl. Math. 36 (1983), no. 6, 705–754. MR MR720591 (85e :76043) Zbl0515.35002MR720591
- Yasushi Shizuta and Kiyoshi Asano, Global solutions of the Boltzmann equation in a bounded convex domain, Proc. Japan Acad. Ser. A Math. Sci. 53 (1977), no. 1, 3–5. MR MR0466988 (57 #6861) Zbl0382.35047MR466988
- Robert M. Strain and Yan Guo, Stability of the relativistic Maxwellian in a collisional plasma, Comm. Math. Phys. 251 (2004), no. 2, 263–320. MR MR2100057 (2005m :82155) Zbl1113.82070MR2100057
- —, Almost exponential decay near Maxwellian, Comm. Partial Differential Equations 31 (2006), no. 1-3, 417–429. MR MR2209761 (2006m :82042) Zbl1096.82010MR2209761
- —, Exponential decay for soft potentials near Maxwellian, Arch. Ration. Mech. Anal. 187 (2008), no. 2, 287–339. MR MR2366140 Zbl1130.76069MR2366140
- G. Toscani and C. Villani, Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation, Comm. Math. Phys. 203 (1999), no. 3, 667–706. MR MR1700142 (2000e :82039) Zbl0944.35066MR1700142
- —, On the trend to equilibrium for some dissipative systems with slowly increasing a priori bounds, J. Statist. Phys. 98 (2000), no. 5-6, 1279–1309. MR MR1751701 (2001g :82069) Zbl1034.82032MR1751701
- Seiji Ukai, On the existence of global solutions of mixed problem for non-linear Boltzmann equation, Proc. Japan Acad. 50 (1974), 179–184. MR MR0363332 (50 #15770) Zbl0312.35061MR363332
- —, Les solutions globales de l’équation de Boltzmann dans l’espace tout entier et dans le demi-espace, C. R. Acad. Sci. Paris Sér. A-B 282 (1976), no. 6, Ai, A317–A320. MR MR0445138 (56 #3482) Zbl0345.45012
- Cédric Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations, Arch. Rational Mech. Anal. 143 (1998), no. 3, 273–307. MR MR1650006 (99j :82065) Zbl0912.45011MR1650006
- —, Regularity estimates via the entropy dissipation for the spatially homogeneous Boltzmann equation without cut-off, Rev. Mat. Iberoamericana 15 (1999), no. 2, 335–352. MR 2000f :82090 Zbl0934.45010MR1715411
- —, Contribution à l’étude mathématique des collisions en théorie cinétique, Master’s thesis, Univ. Paris Dauphine, France, 2000.
- —, A review of mathematical topics in collisional kinetic theory, Handbook of mathematical fluid dynamics, Vol. I, North-Holland, Amsterdam, 2002, pp. 71–305. MR MR1942465 (2003k :82087) Zbl1170.82369MR1942465
- —, Cercignani’s conjecture is sometimes true and always almost true, Comm. Math. Phys. 234 (2003), no. 3, 455–490. MR 2004b :82048 Zbl1041.82018
- —, Hypocoercivity, To appear, 2008.
- C. S. Wang Chang, G. E. Uhlenbeck, and J. de Boer, Studies in Statistical Mechanics, Vol. V, North-Holland, Amsterdam, 1970. MR 29 #6881
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.