Weyl asymptotics for non-self-adjoint operators with small multiplicative random perturbations
- [1] Centre de Mathématiques Laurent Schwartz, UMR 7640, CNRS and École polytechnique, F-91128 Palaiseau Cedex
Séminaire Équations aux dérivées partielles (2007-2008)
- Volume: 2007-2008, page 1-16
Access Full Article
topAbstract
topHow to cite
topSjöstrand, Johannes. "Weyl asymptotics for non-self-adjoint operators with small multiplicative random perturbations." Séminaire Équations aux dérivées partielles 2007-2008 (2007-2008): 1-16. <http://eudml.org/doc/11176>.
@article{Sjöstrand2007-2008,
abstract = {We study the Weyl asymptotics of the distribution of eigenvalues of non-self-adjoint (pseudo)differential operators with small random multiplicative perturbations in arbitrary dimension. We were led to quite essential improvements of many of the probabilistic aspects.},
affiliation = {Centre de Mathématiques Laurent Schwartz, UMR 7640, CNRS and École polytechnique, F-91128 Palaiseau Cedex},
author = {Sjöstrand, Johannes},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {semi-classical pseudo-differential operators; non-self-adjoint operators; random perturbations},
language = {eng},
pages = {1-16},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Weyl asymptotics for non-self-adjoint operators with small multiplicative random perturbations},
url = {http://eudml.org/doc/11176},
volume = {2007-2008},
year = {2007-2008},
}
TY - JOUR
AU - Sjöstrand, Johannes
TI - Weyl asymptotics for non-self-adjoint operators with small multiplicative random perturbations
JO - Séminaire Équations aux dérivées partielles
PY - 2007-2008
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2007-2008
SP - 1
EP - 16
AB - We study the Weyl asymptotics of the distribution of eigenvalues of non-self-adjoint (pseudo)differential operators with small random multiplicative perturbations in arbitrary dimension. We were led to quite essential improvements of many of the probabilistic aspects.
LA - eng
KW - semi-classical pseudo-differential operators; non-self-adjoint operators; random perturbations
UR - http://eudml.org/doc/11176
ER -
References
top- W. Bordeaux-Montrieux, thèse, en préparation
- E.B. Davies, Semi-classical states for non-self-adjoint Schrödinger operators, Comm. Math. Phys. 200(1999), 35–41. Zbl0921.47060MR1671904
- N.Dencker, J.Sjöstrand, M.Zworski, Pseudospectra of semiclassical (pseudo-) differential operators, Comm. Pure Appl. Math., 57(3)(2004), 384–415. Zbl1054.35035MR2020109
- M. Dimassi, J. Sjöstrand, Spectral asymptotics in the semi-classical limit, London Math. Soc. Lecture Notes Ser., 268, Cambridge Univ. Press, (1999). Zbl0926.35002MR1735654
- I.C. Gohberg, M.G. Krein, Introduction to the theory of linear non-selfadjoint operators, Translations of mathematical monographs, Vol 18, AMS, Providence, R.I. (1969). Zbl0181.13504MR246142
- M. Hager, Instabilité spectrale semiclassique pour des opérateurs non-autoadjoints. I. Un modèle, Ann. Fac. Sci. Toulouse Math. (6)15(2)(2006), 243–280. Zbl1131.34057MR2244217
- M. Hager, Instabilité spectrale semiclassique d’opérateurs non-autoadjoints. II. Ann. Henri Poincaré, 7(6)(2006), 1035–1064. Zbl1115.81032
- M. Hager, J. Sjöstrand, Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators, Math. Annalen, to appear, http://arxiv.org/abs/math/0601381, Zbl1151.35063
- A. Melin, J. Sjöstrand, Determinants of pseudodifferential operators and complex deformations of phase space, Methods and Applications of Analysis, 9(2)(2002), 177-238. http://xxx.lanl.gov/abs/math.SP/0111292 Zbl1082.35176MR1957486
- K. Pravda Starov Etude du pseudo-spectre d’opérateurs non auto-adjoints, thèse Rennes 2006, http://tel.archives-ouvertes.fr/tel-00109895
- R.T. Seeley, Complex powers of an elliptic operator. 1967 Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966) pp. 288–307, Amer. Math. Soc., Providence, R.I. Zbl0159.15504MR237943
- J. Sjöstrand, Resonances for bottles and trace formulae, Math. Nachr., 221(2001), 95–149. Zbl0979.35109MR1806367
- J. Sjöstrand, Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations, http://arxiv.org/abs/0802.3584 . Zbl1194.47058
- J. Sjöstrand, M. Zworski, Elementary linear algebra for advanced spectral problems, Ann. Inst. Fourier, 57(7)(2007), 2095-2141. Zbl1140.15009
- M. Zworski, A remark on a paper of E.B. Davies, Proc. A.M.S. 129(2001), 2955–2957. Zbl0981.35107MR1840099
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.