Puits multiples (d'après des travaux avec B. Helffer)

J. Sjöstrand

Séminaire Équations aux dérivées partielles (Polytechnique) (1983-1984)

  • page 1-16

How to cite

top

Sjöstrand, J.. "Puits multiples (d'après des travaux avec B. Helffer)." Séminaire Équations aux dérivées partielles (Polytechnique) (1983-1984): 1-16. <http://eudml.org/doc/111859>.

@article{Sjöstrand1983-1984,
author = {Sjöstrand, J.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {perturbation of the potential; spectral theory; Schrödinger operators; nearly zero eigenvalue; compact Riemannian manifold; interaction matrix; resolvent kernel},
language = {fre},
pages = {1-16},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Puits multiples (d'après des travaux avec B. Helffer)},
url = {http://eudml.org/doc/111859},
year = {1983-1984},
}

TY - JOUR
AU - Sjöstrand, J.
TI - Puits multiples (d'après des travaux avec B. Helffer)
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1983-1984
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 16
LA - fre
KW - perturbation of the potential; spectral theory; Schrödinger operators; nearly zero eigenvalue; compact Riemannian manifold; interaction matrix; resolvent kernel
UR - http://eudml.org/doc/111859
ER -

References

top
  1. [1] S. Agmon: Lectures on exponential decay of solutions to second order elliptic equations, Math. Notes, Princeton University Press n° 29 (1982). Zbl0503.35001MR745286
  2. [2] E.M. Harrell: Double Wells, Comm. Math. Phys.75(1980), 239-261. Zbl0445.35036MR581948
  3. [3] B. Helffer, J. Sjöstrand: Multiple wells in the semi-classical limit I, preprint. Zbl0546.35053
  4. [4] B. Helffer, J. Sjöstrand: Puits multiples en limite semi-classique II, manuscrit. 
  5. [5] B. Helffer, J. Sjöstrand, Multiple wells in the semi-classical limit III, manuscrit. Zbl0597.35023
  6. [6] G. Jona-Lasinio, F. Martinelli, E. Scoppola: New approach to the semi-classical limit of quantum mechanics, I. Tunnelings in one dimension, Comm. Math. Phys.80(1981), 223-254. Zbl0483.60094MR623159
  7. [7] F. Pham: Calcul microdifferentiel complexe et méthode semi-classique. Prépublic. de Math. de l'Univ. de Nice n° 14 (1983). 
  8. [8] J-P. Serre: Représentations linéaires de groupes finis, Hermann, Paris (1967). Zbl0223.20003MR232867
  9. [9] B. Simon: Semi-classical analysis of low lying eigenvalues I. Non-degenerate minima: Asymptotic expansions. Ann. Inst. Henri Poincaré, 38 n°3 (1983), 295-307. (et correction à paraître). Zbl0537.35023MR708966
  10. [10] B. Simon: Semi-classical analysis of low lying eigenvalues II. Tunneling. Preprint. Voir aussi: Instantons, double wells and large dérivations, Bull. A.M.S. Vol. 8, n°9, March 1983, 323-326. Zbl0529.35059

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.