Some regularizing methods for transport equations and the regularity of solutions to scalar conservation laws
- [1] Équipe Tosca, Inria 2004 route des Lucioles BP 93 06902 Sophia Antipolis France Laboratoire Dieudonné Université de Nice Parc Valrose 06108 Nice cedex 02
Séminaire Équations aux dérivées partielles (2008-2009)
- Volume: 2008-2009, page 1-15
Access Full Article
topAbstract
topHow to cite
topJabin, Pierre-Emmanuel. "Some regularizing methods for transport equations and the regularity of solutions to scalar conservation laws." Séminaire Équations aux dérivées partielles 2008-2009 (2008-2009): 1-15. <http://eudml.org/doc/11190>.
@article{Jabin2008-2009,
abstract = {We study several regularizing methods, stationary phase or averaging lemmas for instance. Depending on the regularity assumptions that are made, we show that they can either be derived one from the other or that they lead to different results. Those are applied to Scalar Conservation Laws to precise and better explain the regularity of their solutions.},
affiliation = {Équipe Tosca, Inria 2004 route des Lucioles BP 93 06902 Sophia Antipolis France Laboratoire Dieudonné Université de Nice Parc Valrose 06108 Nice cedex 02},
author = {Jabin, Pierre-Emmanuel},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {stationary phase; averaging lemma},
language = {eng},
pages = {1-15},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Some regularizing methods for transport equations and the regularity of solutions to scalar conservation laws},
url = {http://eudml.org/doc/11190},
volume = {2008-2009},
year = {2008-2009},
}
TY - JOUR
AU - Jabin, Pierre-Emmanuel
TI - Some regularizing methods for transport equations and the regularity of solutions to scalar conservation laws
JO - Séminaire Équations aux dérivées partielles
PY - 2008-2009
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2008-2009
SP - 1
EP - 15
AB - We study several regularizing methods, stationary phase or averaging lemmas for instance. Depending on the regularity assumptions that are made, we show that they can either be derived one from the other or that they lead to different results. Those are applied to Scalar Conservation Laws to precise and better explain the regularity of their solutions.
LA - eng
KW - stationary phase; averaging lemma
UR - http://eudml.org/doc/11190
ER -
References
top- M. Bézard, Régularité précisée des moyennes dans les équations de transport. Bull. Soc. Math. France, 122 (1994), 29–76. Zbl0798.35025MR1259108
- F. Bouchut, Hypoelliptic regularity in kinetic equations. J. Math. Pures Appl. (9), 81 (2002), 1135–1159. Zbl1045.35093MR1949176
- F. Bouchut, F. Golse and M. Pulvirenti, Kinetic equations and asymptotic theories. Series in Appl. Math., no. 4, Elsevier (2000). Zbl0979.82048
- K.S. Cheng, A regularity Theorem for a Nonconvex Scalar Conservation Law. J. Differential Equations61 (1986), no. 1, 79–127. Zbl0545.34005MR818862
- C. Cheverry, Regularizing effects for multidimensional scalar conservation laws. Ann. Inst. H. Poincaré, Analyse Non Linéaire, 17(4) (2000), 413–472. Zbl0966.35074MR1782740
- G. Crippa, F. Otto, and M. Westdickenberg, Regularizing effect of nonlinearity in multidimensional scalar conservation laws. To appear Transport Equations and Multi-D Hyperbolic Conservation Laws, Lecture Notes of the Unione Matematica Italiana. Zbl1155.35400MR2409677
- C.M. Dafermos, Hyperbolic conservation laws in continuum physics. Springer Verlag, GM 325 (1999). Zbl0940.35002MR2169977
- C. De Lellis, F. Otto, and M. Westdickenberg, Structure of entropy solutions for multi-dimensional scalar conservation laws. Arch. Ration. Mech. Anal., 170(2) (2003), 137–184. Zbl1036.35127MR2017887
- R. DiPerna, P.L. Lions and Y. Meyer, regularity of velocity averages. Ann. Inst. H. Poincaré Anal. Non Linéaire, 8 (1991), 271–287. Zbl0763.35014MR1127927
- P. Gérard, F. Golse, Averaging regularity results for PDEs under transversality assumptions. Comm. Pure Appl. Math.45(1) (1992), 1–26. Zbl0832.35020MR1135922
- F. Golse, P.L. Lions, B. Perthame and R. Sentis, Regularity of the moments of the solution of a transport equation. J. Funct. Anal., 26 (1988), 110-125. Zbl0652.47031MR923047
- F. Golse, B. Perthame, R. Sentis, Un résultat de compacité pour les équations de transport et application au calcul de la limite de la valeur propre principale d’un opérateur de transport. C.R. Acad. Sci. Paris Série I, 301 (1985), 341–344. Zbl0591.45007MR808622
- D. Hoff, The sharp form of Oleĭnik’s entropy condition in several space dimensions. Trans. Amer. Math. Soc.276 (1983), no. 2, 707–714. Zbl0528.35062MR688972
- P.E. Jabin and B. Perthame, Regularity in kinetic formulations via averaging lemmas. ESAIM Control Optim. Calc. Var.8 (2002), 761–774. Zbl1065.35185MR1932972
- P.E. Jabin and L. Vega, A real space method for averaging lemmas, J. de Math. Pures Appl., 83 (2004), 1309–1351. Zbl1082.35043MR2096303
- S.N. Kruzkov, First order quasilinear equations in several independent variables. Math USSR Sb.10 (1970), 217–243. Zbl0215.16203
- P.L. Lions, B. Perthame and E. Tadmor, A kinetic formulation of multidimensional scalar conservation laws and related questions. J. Amer. Math. Soc., 7 (1994), 169–191. Zbl0820.35094MR1201239
- O.A. Oleĭnik, On Cauchy’s problem for nonlinear equations in a class of discontinuous functions. Doklady Akad. Nauk SSSR (N.S.), 95 (1954), 451–454. Zbl0058.32101
- B. Perthame, Kinetic Formulations of conservation laws, Oxford series in mathematics and its applications, Oxford University Press (2002). Zbl1030.35002MR2064166
- D. Serre, Systèmes hyperboliques de lois de conservation. Diderot, Paris (1996). Zbl0930.35002
- E. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, III. Princeton University Press, Princeton, NJ, 1993. Zbl0821.42001MR1232192
- E. Tadmor, The large-time behavior of the scalar, genuinely nonlinear Lax Friedrichs scheme. Math. Comp.43 (1984), no. 168, 353–368. Zbl0598.65067MR758188
- E. Tadmor, Local error estimates for discontinuous solutions of nonlinear hyperbolic equations. SIAM J. Numer. Anal.28 (1991), no. 4, 891–906 Zbl0732.65084MR1111445
- A.I. Vol’pert, Spaces and quasilinear equations.(Russian) Mat. Sb. (N.S.)73 (115) (1967) 255–302. [English transl.: Math. USSSR-Sb.2 (1967), 225–267.] Zbl0168.07402
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.