Some regularizing methods for transport equations and the regularity of solutions to scalar conservation laws

Pierre-Emmanuel Jabin[1]

  • [1] Équipe Tosca, Inria 2004 route des Lucioles BP 93 06902 Sophia Antipolis France Laboratoire Dieudonné Université de Nice Parc Valrose 06108 Nice cedex 02

Séminaire Équations aux dérivées partielles (2008-2009)

  • Volume: 2008-2009, page 1-15

Abstract

top
We study several regularizing methods, stationary phase or averaging lemmas for instance. Depending on the regularity assumptions that are made, we show that they can either be derived one from the other or that they lead to different results. Those are applied to Scalar Conservation Laws to precise and better explain the regularity of their solutions.

How to cite

top

Jabin, Pierre-Emmanuel. "Some regularizing methods for transport equations and the regularity of solutions to scalar conservation laws." Séminaire Équations aux dérivées partielles 2008-2009 (2008-2009): 1-15. <http://eudml.org/doc/11190>.

@article{Jabin2008-2009,
abstract = {We study several regularizing methods, stationary phase or averaging lemmas for instance. Depending on the regularity assumptions that are made, we show that they can either be derived one from the other or that they lead to different results. Those are applied to Scalar Conservation Laws to precise and better explain the regularity of their solutions.},
affiliation = {Équipe Tosca, Inria 2004 route des Lucioles BP 93 06902 Sophia Antipolis France Laboratoire Dieudonné Université de Nice Parc Valrose 06108 Nice cedex 02},
author = {Jabin, Pierre-Emmanuel},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {stationary phase; averaging lemma},
language = {eng},
pages = {1-15},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Some regularizing methods for transport equations and the regularity of solutions to scalar conservation laws},
url = {http://eudml.org/doc/11190},
volume = {2008-2009},
year = {2008-2009},
}

TY - JOUR
AU - Jabin, Pierre-Emmanuel
TI - Some regularizing methods for transport equations and the regularity of solutions to scalar conservation laws
JO - Séminaire Équations aux dérivées partielles
PY - 2008-2009
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2008-2009
SP - 1
EP - 15
AB - We study several regularizing methods, stationary phase or averaging lemmas for instance. Depending on the regularity assumptions that are made, we show that they can either be derived one from the other or that they lead to different results. Those are applied to Scalar Conservation Laws to precise and better explain the regularity of their solutions.
LA - eng
KW - stationary phase; averaging lemma
UR - http://eudml.org/doc/11190
ER -

References

top
  1. M. Bézard, Régularité L p précisée des moyennes dans les équations de transport. Bull. Soc. Math. France, 122 (1994), 29–76. Zbl0798.35025MR1259108
  2. F. Bouchut, Hypoelliptic regularity in kinetic equations. J. Math. Pures Appl. (9), 81 (2002), 1135–1159. Zbl1045.35093MR1949176
  3. F. Bouchut, F. Golse and M. Pulvirenti, Kinetic equations and asymptotic theories. Series in Appl. Math., no. 4, Elsevier (2000). Zbl0979.82048
  4. K.S. Cheng, A regularity Theorem for a Nonconvex Scalar Conservation Law. J. Differential Equations61 (1986), no. 1, 79–127. Zbl0545.34005MR818862
  5. C. Cheverry, Regularizing effects for multidimensional scalar conservation laws. Ann. Inst. H. Poincaré, Analyse Non Linéaire, 17(4) (2000), 413–472. Zbl0966.35074MR1782740
  6. G. Crippa, F. Otto, and M. Westdickenberg, Regularizing effect of nonlinearity in multidimensional scalar conservation laws. To appear Transport Equations and Multi-D Hyperbolic Conservation Laws, Lecture Notes of the Unione Matematica Italiana. Zbl1155.35400MR2409677
  7. C.M. Dafermos, Hyperbolic conservation laws in continuum physics. Springer Verlag, GM 325 (1999). Zbl0940.35002MR2169977
  8. C. De Lellis, F. Otto, and M. Westdickenberg, Structure of entropy solutions for multi-dimensional scalar conservation laws. Arch. Ration. Mech. Anal., 170(2) (2003), 137–184. Zbl1036.35127MR2017887
  9. R. DiPerna, P.L. Lions and Y. Meyer, L p regularity of velocity averages. Ann. Inst. H. Poincaré Anal. Non Linéaire, 8 (1991), 271–287. Zbl0763.35014MR1127927
  10. P. Gérard, F. Golse, Averaging regularity results for PDEs under transversality assumptions. Comm. Pure Appl. Math.45(1) (1992), 1–26. Zbl0832.35020MR1135922
  11. F. Golse, P.L. Lions, B. Perthame and R. Sentis, Regularity of the moments of the solution of a transport equation. J. Funct. Anal., 26 (1988), 110-125. Zbl0652.47031MR923047
  12. F. Golse, B. Perthame, R. Sentis, Un résultat de compacité pour les équations de transport et application au calcul de la limite de la valeur propre principale d’un opérateur de transport. C.R. Acad. Sci. Paris Série I, 301 (1985), 341–344. Zbl0591.45007MR808622
  13. D. Hoff, The sharp form of Oleĭnik’s entropy condition in several space dimensions. Trans. Amer. Math. Soc.276 (1983), no. 2, 707–714. Zbl0528.35062MR688972
  14. P.E. Jabin and B. Perthame, Regularity in kinetic formulations via averaging lemmas. ESAIM Control Optim. Calc. Var.8 (2002), 761–774. Zbl1065.35185MR1932972
  15. P.E. Jabin and L. Vega, A real space method for averaging lemmas, J. de Math. Pures Appl., 83 (2004), 1309–1351. Zbl1082.35043MR2096303
  16. S.N. Kruzkov, First order quasilinear equations in several independent variables. Math USSR Sb.10 (1970), 217–243. Zbl0215.16203
  17. P.L. Lions, B. Perthame and E. Tadmor, A kinetic formulation of multidimensional scalar conservation laws and related questions. J. Amer. Math. Soc., 7 (1994), 169–191. Zbl0820.35094MR1201239
  18. O.A. Oleĭnik, On Cauchy’s problem for nonlinear equations in a class of discontinuous functions. Doklady Akad. Nauk SSSR (N.S.), 95 (1954), 451–454. Zbl0058.32101
  19. B. Perthame, Kinetic Formulations of conservation laws, Oxford series in mathematics and its applications, Oxford University Press (2002). Zbl1030.35002MR2064166
  20. D. Serre, Systèmes hyperboliques de lois de conservation. Diderot, Paris (1996). Zbl0930.35002
  21. E. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, III. Princeton University Press, Princeton, NJ, 1993. Zbl0821.42001MR1232192
  22. E. Tadmor, The large-time behavior of the scalar, genuinely nonlinear Lax Friedrichs scheme. Math. Comp.43 (1984), no. 168, 353–368. Zbl0598.65067MR758188
  23. E. Tadmor, Local error estimates for discontinuous solutions of nonlinear hyperbolic equations. SIAM J. Numer. Anal.28 (1991), no. 4, 891–906 Zbl0732.65084MR1111445
  24. A.I. Vol’pert, Spaces B V and quasilinear equations.(Russian) Mat. Sb. (N.S.)73 (115) (1967) 255–302. [English transl.: Math. USSSR-Sb.2 (1967), 225–267.] Zbl0168.07402

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.