Résultats de finitude pour les lacunes spectrales
Séminaire Équations aux dérivées partielles (Polytechnique) (1992-1993)
- Volume: 315, Issue: 12, page 1-5
Access Full Article
topHow to cite
topGrigis, A., and Mohamed, A.. "Résultats de finitude pour les lacunes spectrales." Séminaire Équations aux dérivées partielles (Polytechnique) 315.12 (1992-1993): 1-5. <http://eudml.org/doc/112064>.
@article{Grigis1992-1993,
author = {Grigis, A., Mohamed, A.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {Bethe-Sommerfeld conjecture},
language = {fre},
number = {12},
pages = {1-5},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Résultats de finitude pour les lacunes spectrales},
url = {http://eudml.org/doc/112064},
volume = {315},
year = {1992-1993},
}
TY - JOUR
AU - Grigis, A.
AU - Mohamed, A.
TI - Résultats de finitude pour les lacunes spectrales
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1992-1993
PB - Ecole Polytechnique, Centre de Mathématiques
VL - 315
IS - 12
SP - 1
EP - 5
LA - fre
KW - Bethe-Sommerfeld conjecture
UR - http://eudml.org/doc/112064
ER -
References
top- [1] J. Dahlberg and E. Trubowitz, A remark on two dimensional periodic potentials, Comment Math. Helvetici, 57,130-134, (1982). Zbl0539.35059MR672849
- [2] J. Feldman, H. Knörrer and E. Trubowitz, [2-1] The perturbatively stable spectrum of a periodic Schrödinger operator, Invent. Math.100 (2), (1990), 259-300. Zbl0701.34082MR1047135
- [2-2] Perturbatively unstable eigenvalues of a periodic Schrödinger operator, Comment. Math. Helvetici66 (1991), 557-579. Zbl0763.35024MR1129797
- [3] A. Grigis, Estimations asymptotiques des intervalles d'instabilité pour l'équation de Hill, Ann. Scient. Ec. Norm. Sup., 4ème série, t.20, 1987, p.641-672. Zbl0644.34021MR932802
- [4] H. Knörrer and E. Trubowitz, A directional compactification of the complex Bloch varietyComment. Math. Helvetici65 (1990), 114-149. Zbl0723.32006MR1036133
- [5] L. Hörmander, [5-1] The spectral function of an elliptic operator, Acta Math., 121, 193-218, (1968). Zbl0164.13201MR609014
- [5-2] The analysis of linear partial differential operators, III, IV, Springer-Verlag, Berlin, (1985) Zbl0601.35001MR781536
- [6] T. Ramond, Intervalles d'instabilité pour une équation de Hill à potentiel méromorphe, Thèse Université Paris-Nord, Décembre 1991, et Bulletin de la SMF (1993).
- [7] R.T. Seeley, Complex powers of an elliptique operator, Singular Integrals, Proc. Symp. Pure Math., 10, Am. Math. Soc., 288-307, (1967). Zbl0159.15504MR237943
- [8] M.M. Skriganov, [8-1] Geometric and arithmetic methods in the spectral theory of multidimensionel periodic operators, Proceedings of the Steklov Institute of Math., 171, (2), (1987). Zbl0615.47004MR798454
- [8-2] The spectrum band structure of the three-dimensional Schrödinger operator with periodic potential, Invent. Math., 80, 107-121. (1985). Zbl0578.47003MR784531
- [9] O.A. Veliev, The spectrum of multidimensional periodic operators, (Russian), Teor. Funktssii. Anal. i Prilozhen., 49 (1988), p.17-34. Zbl0664.47005MR963619
- [10] A.V. Volovoy, Improved two-term asymptotics for the eigenvalue distribution function of an elliptic operator on a compact manifold, Comm. in Part. Diff. Equat., 15, (11), 1509-1563, (1990). Zbl0724.35081MR1079602
- [11] L. Brillouin, Wave propagation in periodic structures, Dover PublicationsNew-York (1946). Zbl0050.45002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.