Résultats de finitude pour les lacunes spectrales

A. Grigis; A. Mohamed

Séminaire Équations aux dérivées partielles (Polytechnique) (1992-1993)

  • Volume: 315, Issue: 12, page 1-5

How to cite

top

Grigis, A., and Mohamed, A.. "Résultats de finitude pour les lacunes spectrales." Séminaire Équations aux dérivées partielles (Polytechnique) 315.12 (1992-1993): 1-5. <http://eudml.org/doc/112064>.

@article{Grigis1992-1993,
author = {Grigis, A., Mohamed, A.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {Bethe-Sommerfeld conjecture},
language = {fre},
number = {12},
pages = {1-5},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Résultats de finitude pour les lacunes spectrales},
url = {http://eudml.org/doc/112064},
volume = {315},
year = {1992-1993},
}

TY - JOUR
AU - Grigis, A.
AU - Mohamed, A.
TI - Résultats de finitude pour les lacunes spectrales
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1992-1993
PB - Ecole Polytechnique, Centre de Mathématiques
VL - 315
IS - 12
SP - 1
EP - 5
LA - fre
KW - Bethe-Sommerfeld conjecture
UR - http://eudml.org/doc/112064
ER -

References

top
  1. [1] J. Dahlberg and E. Trubowitz, A remark on two dimensional periodic potentials, Comment Math. Helvetici, 57,130-134, (1982). Zbl0539.35059MR672849
  2. [2] J. Feldman, H. Knörrer and E. Trubowitz, [2-1] The perturbatively stable spectrum of a periodic Schrödinger operator, Invent. Math.100 (2), (1990), 259-300. Zbl0701.34082MR1047135
  3. [2-2] Perturbatively unstable eigenvalues of a periodic Schrödinger operator, Comment. Math. Helvetici66 (1991), 557-579. Zbl0763.35024MR1129797
  4. [3] A. Grigis, Estimations asymptotiques des intervalles d'instabilité pour l'équation de Hill, Ann. Scient. Ec. Norm. Sup., 4ème série, t.20, 1987, p.641-672. Zbl0644.34021MR932802
  5. [4] H. Knörrer and E. Trubowitz, A directional compactification of the complex Bloch varietyComment. Math. Helvetici65 (1990), 114-149. Zbl0723.32006MR1036133
  6. [5] L. Hörmander, [5-1] The spectral function of an elliptic operator, Acta Math., 121, 193-218, (1968). Zbl0164.13201MR609014
  7. [5-2] The analysis of linear partial differential operators, III, IV, Springer-Verlag, Berlin, (1985) Zbl0601.35001MR781536
  8. [6] T. Ramond, Intervalles d'instabilité pour une équation de Hill à potentiel méromorphe, Thèse Université Paris-Nord, Décembre 1991, et Bulletin de la SMF (1993). 
  9. [7] R.T. Seeley, Complex powers of an elliptique operator, Singular Integrals, Proc. Symp. Pure Math., 10, Am. Math. Soc., 288-307, (1967). Zbl0159.15504MR237943
  10. [8] M.M. Skriganov, [8-1] Geometric and arithmetic methods in the spectral theory of multidimensionel periodic operators, Proceedings of the Steklov Institute of Math., 171, (2), (1987). Zbl0615.47004MR798454
  11. [8-2] The spectrum band structure of the three-dimensional Schrödinger operator with periodic potential, Invent. Math., 80, 107-121. (1985). Zbl0578.47003MR784531
  12. [9] O.A. Veliev, The spectrum of multidimensional periodic operators, (Russian), Teor. Funktssii. Anal. i Prilozhen., 49 (1988), p.17-34. Zbl0664.47005MR963619
  13. [10] A.V. Volovoy, Improved two-term asymptotics for the eigenvalue distribution function of an elliptic operator on a compact manifold, Comm. in Part. Diff. Equat., 15, (11), 1509-1563, (1990). Zbl0724.35081MR1079602
  14. [11] L. Brillouin, Wave propagation in periodic structures, Dover PublicationsNew-York (1946). Zbl0050.45002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.