Intervalles d'instabilité pour une équation de Hill à potentiel méromorphe

Thierry Ramond

Bulletin de la Société Mathématique de France (1993)

  • Volume: 121, Issue: 3, page 403-444
  • ISSN: 0037-9484

How to cite

top

Ramond, Thierry. "Intervalles d'instabilité pour une équation de Hill à potentiel méromorphe." Bulletin de la Société Mathématique de France 121.3 (1993): 403-444. <http://eudml.org/doc/87672>.

@article{Ramond1993,
author = {Ramond, Thierry},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Hill equation; meromorphic potential; spectrum; 1-dimensional periodic Schrödinger operator; gaps; instability intervals; complex WKB method; asymptotic expansion},
language = {fre},
number = {3},
pages = {403-444},
publisher = {Société mathématique de France},
title = {Intervalles d'instabilité pour une équation de Hill à potentiel méromorphe},
url = {http://eudml.org/doc/87672},
volume = {121},
year = {1993},
}

TY - JOUR
AU - Ramond, Thierry
TI - Intervalles d'instabilité pour une équation de Hill à potentiel méromorphe
JO - Bulletin de la Société Mathématique de France
PY - 1993
PB - Société mathématique de France
VL - 121
IS - 3
SP - 403
EP - 444
LA - fre
KW - Hill equation; meromorphic potential; spectrum; 1-dimensional periodic Schrödinger operator; gaps; instability intervals; complex WKB method; asymptotic expansion
UR - http://eudml.org/doc/87672
ER -

References

top
  1. [AV-SI] AVRON (J.) and SIMON (B.). — The Asymptotics of the Gap in the Mathieu Equation, Ann. Physics, t. 134, 1981, p. 76-84. Zbl0464.34020MR82h:34030
  2. [BR] BRILLOUIN (L.). — The BKW Approximation and Hill's Equation, II, Quart. Appl. Math., t. VII, 4, 1949, p. 363-380. Zbl0035.07701
  3. [EC] ÉCALLE (J.). — Les fonctions résurgentes (en trois parties). — Pub. Mathématiques d'Orsay, 81-05, 1981. Zbl0499.30034
  4. [GE-GR] GÉRARD (C.) and GRIGIS (A.). — Precise Estimates of Tunneling and Eingenvalues near a Potential Barrier, J. Differential Equations, t. 72, 1988, p. 149-177. Zbl0668.34022MR89h:34024
  5. [GR] GRIGIS (A.). — Estimations asymptotiques des intervalles d'instabilité pour l'équation de Hill, Ann. Sci. École Norm. Sup. (4), t. 20, 1987, p. 641-672. Zbl0644.34021MR89e:34056
  6. [HE-SJ] HELFFER (B.) and SJÖSTRAND (J.). — Semiclassical Analysis for Harper's Equation, III, Mémoire n° 39, Bull. Soc. Math. France, 1989. Zbl0725.34099
  7. [HO] HOCHSTADT (H.). — Asymptotic Estimates for the Sturm-Liouville Spectrum, Comm. Pure Appl. Math., t. XIV, 1961, p. 749-764. Zbl0102.07403MR24 #A2699
  8. [HÖ] HÖRMANDER (L.). — The Analysis of Linear Partial Differential Equations, I. — Grundlehren der mathematischen Wissenschaften 256, Springer, 1983. Zbl0521.35001
  9. [MA-WI] MAGNUS (W.) and WINKLER (S.). — Hill's Equation. — Interscience Publishers, John Wiley, 1969. 
  10. [MR] MARTINEZ (A.). — Estimations de l'effet tunnel pour le double puits II, états hautement excités, Bull. Soc. Math. France, t. 116, 1988, p. 199-229. Zbl0666.35069MR89i:35044
  11. [MZ] MÄRZ (C.). — Spectral Asymptotics near the Potential Maximum for Hill's Equation, Thèse, Pub. Université Paris-Sud, 1990. 
  12. [OL] OLVER (F.W.J.). — Asymptotics and Special Functions. — Academic Press, 1974. Zbl0303.41035MR55 #8655
  13. [PH] PHAM (F.). — in Algebraic Analysis, vol. II, vol. dedicated to Prof. Sato. — Academic Press, 1988, p. 699-726. Zbl0686.58032MR90m:81126
  14. [RE-SI] REED (M.) and SIMON (B.). — Methods of Modern Mathematical Physics IV. — Academic Press, 1978. Zbl0401.47001MR58 #12429c
  15. [SJ] SJÖSTRAND (J.). — Singularités analytiques microlocales, Astérisque n° 95, 1982. Zbl0524.35007MR84m:58151
  16. [SK] SKRIGANOV (M.M.). — Geometric and Arithmetic Methods in the Spectral Theory of Multidimensional Periodic Operators, Proc. Steklov Inst. Math., t. 171, 1987. Zbl0615.47004MR88g:47038
  17. [TR] TRUBOWITZ (E.). — The Inverse Problem for Periodic Potentials, Comm. Pure Appl. Math., t. XXX, 1977, p. 321-337. Zbl0403.34022MR55 #3408
  18. [VO1] VOROS (A.). — Spectre de l'équation de Schrödinger et méthode BKW, Pub. Mathématiques d'Orsay 81-09, 1981. Zbl0468.34011
  19. [VO2] VOROS (A.). — The Return of the Quartic Oscillator. The Complex WKB Method, Ann. Inst. H. Poincaré Phys. Théor., t. 39, 3, 1983, p. 231-338. Zbl0526.34046MR86m:81051

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.