Regularity properties of the generalized hamiltonian flow
Séminaire Équations aux dérivées partielles (Polytechnique) (1992-1993)
- page 1-10
Access Full Article
topHow to cite
topStoyanov, L.. "Regularity properties of the generalized hamiltonian flow." Séminaire Équations aux dérivées partielles (Polytechnique) (1992-1993): 1-10. <http://eudml.org/doc/112069>.
@article{Stoyanov1992-1993,
author = {Stoyanov, L.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {generalized Hamiltonian flow; regularity},
language = {eng},
pages = {1-10},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Regularity properties of the generalized hamiltonian flow},
url = {http://eudml.org/doc/112069},
year = {1992-1993},
}
TY - JOUR
AU - Stoyanov, L.
TI - Regularity properties of the generalized hamiltonian flow
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1992-1993
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 10
LA - eng
KW - generalized Hamiltonian flow; regularity
UR - http://eudml.org/doc/112069
ER -
References
top- [I] M. Ikawa: Decay of solutions of the wave equation in the exterior of several strictly convex bodies. Ann. Inst. Fourier38 (1988), 113-146. Zbl0636.35045MR949013
- [H] L. Hörmander: The Analysis of Linear Partial Differential Operators, vol. III, Springer-Verlag, Berlin, 1985. Zbl0601.35001
- [LP1] P. Lax, R. Phillips: Scattering Theory. Academic Press, New York, 1967. Zbl0186.16301MR217440
- [LP2] P. Lax, R. Phillips: The scattering of sound waves by an obstacle. Comm. Pure Appl. Math.30 (1977), 195-233. Zbl0335.35075MR442510
- [Ma] A. Majda: A representation formula for the scattering operator and the inverse problem for arbitrary bodies. Comm. Pure Appl. Math.30 (1977), 165-194. Zbl0335.35076MR435625
- [MS] R. Melrose, J. Sjöstrand: Singularities in boundary value problems, I. Comm. Pure Appl. Math.31 (1978), 593-617. Zbl0368.35020MR492794
- [PS1] V. Petkov, L. Stoyanov: Singularities of the scattering kernel and scattering invariants for several strictly convex obstacles. Trans. Amer. Math. Soc.312, (1989), 203-235. Zbl0685.35083MR929661
- [PS2] V. Petkov, L. Stoyanov: Geometry of Reflecting Rays and Inverse Spectral Problems. John Wiley & Sons, Chichester, 1992. Zbl0761.35077MR1172998
- [PS3] V. Petkov, L. Stoyanov: Sojourn times of trapping rays and the behaviour of the modified resolvent of the Laplacian. University of Bordeaux I - C.N.R.S., Preprint 9209, 1992.
- [S] L. Stoyanov: An inverse scattering result for several convex bodies. Preprint, 1992.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.