Regularity properties of the generalized hamiltonian flow

L. Stoyanov

Séminaire Équations aux dérivées partielles (Polytechnique) (1992-1993)

  • page 1-10

How to cite

top

Stoyanov, L.. "Regularity properties of the generalized hamiltonian flow." Séminaire Équations aux dérivées partielles (Polytechnique) (1992-1993): 1-10. <http://eudml.org/doc/112069>.

@article{Stoyanov1992-1993,
author = {Stoyanov, L.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {generalized Hamiltonian flow; regularity},
language = {eng},
pages = {1-10},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Regularity properties of the generalized hamiltonian flow},
url = {http://eudml.org/doc/112069},
year = {1992-1993},
}

TY - JOUR
AU - Stoyanov, L.
TI - Regularity properties of the generalized hamiltonian flow
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1992-1993
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 10
LA - eng
KW - generalized Hamiltonian flow; regularity
UR - http://eudml.org/doc/112069
ER -

References

top
  1. [I] M. Ikawa: Decay of solutions of the wave equation in the exterior of several strictly convex bodies. Ann. Inst. Fourier38 (1988), 113-146. Zbl0636.35045MR949013
  2. [H] L. Hörmander: The Analysis of Linear Partial Differential Operators, vol. III, Springer-Verlag, Berlin, 1985. Zbl0601.35001
  3. [LP1] P. Lax, R. Phillips: Scattering Theory. Academic Press, New York, 1967. Zbl0186.16301MR217440
  4. [LP2] P. Lax, R. Phillips: The scattering of sound waves by an obstacle. Comm. Pure Appl. Math.30 (1977), 195-233. Zbl0335.35075MR442510
  5. [Ma] A. Majda: A representation formula for the scattering operator and the inverse problem for arbitrary bodies. Comm. Pure Appl. Math.30 (1977), 165-194. Zbl0335.35076MR435625
  6. [MS] R. Melrose, J. Sjöstrand: Singularities in boundary value problems, I. Comm. Pure Appl. Math.31 (1978), 593-617. Zbl0368.35020MR492794
  7. [PS1] V. Petkov, L. Stoyanov: Singularities of the scattering kernel and scattering invariants for several strictly convex obstacles. Trans. Amer. Math. Soc.312, (1989), 203-235. Zbl0685.35083MR929661
  8. [PS2] V. Petkov, L. Stoyanov: Geometry of Reflecting Rays and Inverse Spectral Problems. John Wiley & Sons, Chichester, 1992. Zbl0761.35077MR1172998
  9. [PS3] V. Petkov, L. Stoyanov: Sojourn times of trapping rays and the behaviour of the modified resolvent of the Laplacian. University of Bordeaux I - C.N.R.S., Preprint 9209, 1992. 
  10. [S] L. Stoyanov: An inverse scattering result for several convex bodies. Preprint, 1992. 

NotesEmbed ?

top

You must be logged in to post comments.