Résonances par correspondance

A. Grigis

Séminaire Équations aux dérivées partielles (Polytechnique) (1994-1995)

  • page 1-9

How to cite

top

Grigis, A.. "Résonances par correspondance." Séminaire Équations aux dérivées partielles (Polytechnique) (1994-1995): 1-9. <http://eudml.org/doc/112112>.

@article{Grigis1994-1995,
author = {Grigis, A.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {semiclassical Schrödinger operators; rate of exponential Decay; broken instanton},
language = {fre},
pages = {1-9},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Résonances par correspondance},
url = {http://eudml.org/doc/112112},
year = {1994-1995},
}

TY - JOUR
AU - Grigis, A.
TI - Résonances par correspondance
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1994-1995
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 9
LA - fre
KW - semiclassical Schrödinger operators; rate of exponential Decay; broken instanton
UR - http://eudml.org/doc/112112
ER -

References

top
  1. [A-D] Asch J., Duclos P.: An elementary model of dynamical tunneling; in Differential Equations with Applications to Mathematical Physics (F. Ames, J.V. Herod, E. Harrel eds.), 1993, 1-11, Academic Press. Zbl0789.35127MR1207143
  2. [B] Baklouti, H.: Asymptotique des largeurs de résonances pour un modèle d'effet tunnel microlocal; Thèse Université Paris-Nord, (1995). 
  3. [G-G] Gérard C., Grigis A.: Precise estimates of tunneling and eigenvalues near a potential barrier; Journal of Differential Equations72, (1988), 149-177. Zbl0668.34022MR929202
  4. [H-S1] Helffer B., Söstrand J.: Multiple wells in the semi-classical limit I, Comm. in P.D.E.9 (1984) 337-408. Zbl0546.35053MR740094
  5. [H-S2] Helffer B., Sjöstrand J.: Semiclassical Analysis for Harper's Equation III, Bulletin de la SMF Mémoire n° 39, (1989), 1-124. Zbl0725.34099MR1041490
  6. [H-S3] Helffer B., Sjöstrand J.: Résonances en limite semi-classique, Bulletin de la SMF, Mémoire 24-25 (1986), 1-228. Zbl0631.35075MR871788
  7. [K-R] Kaïdi N., Rouleux M.: Forme normale d'un Hamiltonien à deux niveaux près d'un point de branchement en limite semi-classique, CRAS143, 317 (série 1) 359-364. Zbl0797.58083MR1235449
  8. [M1] Martinez A.: Estimates on complex interactions in phase space, Mathematische Nachrichten167 (1994) 203-254. Zbl0836.35135MR1285313
  9. [M2] Martinez A.: Precise exponential estimates in adiabatic theory, J. Math. Phys.35 (8) (1994) 3889-3915. Zbl0808.47053MR1284618
  10. [M3] Martinez A.: Résonances dans l'approximation de Born-Oppenheimer I ; J. of Diff. Eq.91 (1991) 204-234, - II, Comm. Math. Phys.135, (1991) 517-530. Zbl0737.35046MR1091576
  11. [Mä] März C.: Spectral Asymptotics near the Potential Maximum for Hill's Equation, Asymptotic Analysis5 (1992) 221-267. Zbl0786.34080MR1145112
  12. [M-M] Martinez A., Messirdi B., Resonances of diatomic molecules in the Born-Oppenheimer approximation, Comm in PDE19 (7 et 8) (1994) 1139-1162. Zbl0826.35148MR1284804
  13. [N1] Nakamura S.: Tunneling estimates in momentum space and scattering, Spectral and Scattering theory (ed Ikawa M.) Marcel Decker, New-York (1994). Zbl0827.35097
  14. [N2] Nakamura S.: On Martinez's method of phase space tunneling, preprint 1994Université de Tokyo, à paraître dans Reviews in Math. Phys. Zbl0842.35145MR1326141
  15. [N3] Nakamura S.: On an example of phase-space tunneling, preprint 1994Université de Tokyo. Zbl0833.34088MR1357496
  16. [R] Ramond T.: Intervalles d'instabilité pour une équation de Hill à potentiel méromorphe, Bulletin de la SMF121 (1993) 403-444. Zbl0790.34051MR1242638
  17. [S] Simon B.: Semiclassical analysis of low-lying eigenvalues, II Tunneling, Ann. of Math.120 (1984) 89-118. Zbl0626.35070MR750717

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.